Найдём вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Обозначим событием А: биатлонист попал в мишень при первом выстреле; Обозначим событием В: биатлонист попал в мишень при втором выстреле; Обозначим событием С: биатлонист попал в мишень при третьем выстреле; Обозначим событием D: биатлонист промахнулся мимо мишени при четвертом выстреле; Обозначим событием Е: биатлонист промахнулся мимо мишени при пятом выстреле. По условиям задачи Р(А)=Р(В)=Р(С)=0,8 События D и Е противоположные событиям А,В,С. Р(D)=Р(Е)=1-0,8=0,2 Произведением двух событий и называют событие , заключающееся в совместном появлении этих событий. Р=Р(А)*Р(В)*Р(С)*Р(D)*Р(Е)=0,8*0,8*0,8*0,2*0,2=0,02048≈0,02 ответ: вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся, равна 0,02
По условию задачи нам нужно рассмотреть вариант, при котором биатлонист попадает в хотя бы один раз из пяти попыток. Это означает, что может быть любая комбинация попаданий: 2 попадания и 3 промаха, 3 попадания и 2 промаха или все выстрелы попали цель. НО не может быть комбинации, при которой биатлонист ни разу не попал в цель. То есть, чтобы найти вероятность хотя бы одного попадания, нужно из единицы вычесть вероятность промаха по всем мишеням. Так как вероятность попадания 0,8, то вероятность промаха соответственно 1 - 0,8 = 0,2. Каждое событие (выстрел) происходит независимо друг от друга, поэтому используем формулу сложения независимых событий P(вероятность)=P1(вероятность 1 события) * Р2(вероятность 2 события) и так далее. P = 0.2 * 0.2 * 0.2 * 0.2 * 0.2 = 0.00032. Следовательно вероятность всех остальных событий равна 1 - 0,00032 = 0,99968
Обозначим событием А: биатлонист попал в мишень при первом выстреле;
Обозначим событием В: биатлонист попал в мишень при втором выстреле;
Обозначим событием С: биатлонист попал в мишень при третьем выстреле;
Обозначим событием D: биатлонист промахнулся мимо мишени при четвертом выстреле;
Обозначим событием Е: биатлонист промахнулся мимо мишени при пятом выстреле.
По условиям задачи Р(А)=Р(В)=Р(С)=0,8
События D и Е противоположные событиям А,В,С.
Р(D)=Р(Е)=1-0,8=0,2
Произведением двух событий и называют событие , заключающееся в совместном появлении этих событий.
Р=Р(А)*Р(В)*Р(С)*Р(D)*Р(Е)=0,8*0,8*0,8*0,2*0,2=0,02048≈0,02
ответ: вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся, равна 0,02
Каждое событие (выстрел) происходит независимо друг от друга, поэтому используем формулу сложения независимых событий P(вероятность)=P1(вероятность 1 события) * Р2(вероятность 2 события) и так далее. P = 0.2 * 0.2 * 0.2 * 0.2 * 0.2 = 0.00032. Следовательно вероятность всех остальных событий равна 1 - 0,00032 = 0,99968