1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3
НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.
Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18
Так как по условию число выстрелов не ограничено, то случайная величина X - число сделанных выстрелов - может принимать значения от 1 до ∞. Найдём соответствующие вероятности:
Проверка: данные вероятности составляют бесконечную геометрическую прогрессию с первым членом b1=p1 и знаменателем q=(1-p)=0,95. Её сумма ∑pi=p1(1-q)=0,05/0,05=1 - значит, вероятности найдены верно.
а) составляем закон распределения случайной величины X:
xi 1 2 ... n ...
pi 0,05 0,05*(1-0,05) 0,05*(1-0,05)^(n-1)
б) находим математическое ожидание:
M[X]=∑xi*pi=p1+2*p2+...+n*pn+...
Для нахождения суммы данного ряда запишем ряд для вероятностей ∑pi в виде: ∑pi=∑p1*z^(n-1), где z=1-0,05, и продифференцируем его:
Так как ∑pi=p1/(1-z), то d/dz∑pi=[p1/(1-z)]'=p1/(1-z)². А теперь замечаем, что p1*z=p2, p1*z²=p3,..., p1*z^(n-1)=pn. Отсюда следует, что M[X]=d/dz∑pi=p1/(1-z)²=0,05/(0,05)²=1/0,05=20.
Теперь находим дисперсию. Используем формулу:
D[X]=M[X²]-M²[X]. Найдём M[X²]:
M[X²]=∑n²*pn=∑n²*p1*z^(n-1). Для нахождения суммы данного ряда возьмём ряд для M[X] и продифференцируем его:
d/dz∑n*p1*z^(n-1)=∑p1*n*(n-1)*z^(n-2)=∑p1*(n²-n)*z^(n-2)=∑p1*n²*z^(n-2)-∑p1*n*z^(n-2). Умножая теперь это равенство на z, получаем: z*dM[X]/dz=∑p1*n²*z^(n-1)-∑p1*n*z^(n-1). Отсюда ∑p1*n²*z^(n-1)=z*dM[X]/dz+∑p1*n*z^(n-1). Но так как М[X]=p1/(1-z)², то dM[X]/dz=2*p1/(1-z)³, откуда z*dM[X]/dz=2*p1*z/(1-z)³=760. Отсюда M[X²]=760+20=780 и D(X]=780-20²=380.
в) пусть событие А состоит в том, что поражения цели потребуется не менее 5 выстрелов. Рассмотрим противоположное событие В - потребуется менее 5 выстрелов. Так как события А и В несовместны и притом образуют полную группу, то P(A)+P(B)=1, откуда P(A)=1-P(B). Но P(B)=p1+p2+p3+p4=0,18549375. Отсюда P(A)=0,81450625.
1) Взаимно простые числа - такие, что не имеют общих делителей, кроме 1. Для них НОК - просто произведение:
3, 4: НОК(3, 4) = 12
3, 7: НОК(3, 7) = 21
3, 8: НОК(3, 8) = 24
4, 7: НОК(4, 7) = 28
4, 9: НОК(4, 9) = 36
6, 7: НОК(6, 7) = 42
7, 8: НОК(7, 8) = 56
7, 9: НОК(7, 9) = 63
8, 9: НОК(8, 9) = 72
2) Эти числа должны иметь вид x, n*x. Максимальное число, на которое делится каждое из них, равно x, а минимальное число, которое делится на каждое из них равно n*x.
3, 6: НОД(3, 6) = 3; НОК(3, 6) = 6
3, 9: НОД(3, 9) = 3; НОК(3, 9) = 9
4, 8: НОД(4, 8) = 4; НОК(4, 8) = 8
3) Сюда подойдут все пары, выписанные в пункте 2. Остальные пары:
4, 6: НОД(4, 6) = 2; НОК(4, 6) = 12
6, 8: НОД(6, 8) = 2; НОК(6, 8) = 24
6, 9: НОД(6, 9) = 3; НОК(6, 9) = 18
Пример вычисления для НОД и НОК пары 6 и 9:
Раскладываем на простые множители: 6 = 2 * 3, 9 = 3 * 3
НОД - произведение всех простых множителей, входящих одновременно в оба разложения. НОД(6, 9) = 3
НОК - произведение всех простых множителей, входящих хотя бы в одно разложение. НОК(6, 9) = 2 * 3 * 3 = 18.
Для упрощения жизни можно заметить, что для пары чисел x и y верно равенство: НОД(x, y) * НОК(x, y) = xy. Тогда, например, вычислив, что НОД(6, 9) = 3, сразу находим, что НОК(6, 9) = 6 * 9 / НОД(6, 9) = 54 / 3 = 18
Пошаговое объяснение:
Так как по условию число выстрелов не ограничено, то случайная величина X - число сделанных выстрелов - может принимать значения от 1 до ∞. Найдём соответствующие вероятности:
p1=0,05; p2=(1-0,05)*0,5; ... pn=0,05*(1-0,05)^(n-1); ...
Проверка: данные вероятности составляют бесконечную геометрическую прогрессию с первым членом b1=p1 и знаменателем q=(1-p)=0,95. Её сумма ∑pi=p1(1-q)=0,05/0,05=1 - значит, вероятности найдены верно.
а) составляем закон распределения случайной величины X:
xi 1 2 ... n ...
pi 0,05 0,05*(1-0,05) 0,05*(1-0,05)^(n-1)
б) находим математическое ожидание:
M[X]=∑xi*pi=p1+2*p2+...+n*pn+...
Для нахождения суммы данного ряда запишем ряд для вероятностей ∑pi в виде: ∑pi=∑p1*z^(n-1), где z=1-0,05, и продифференцируем его:
d/dz∑pi=∑p1*(n-1)*z^(n-2)=p1+2*p1*z+3*p1*z²...+n*p1*z^(n-1)+...
Так как ∑pi=p1/(1-z), то d/dz∑pi=[p1/(1-z)]'=p1/(1-z)². А теперь замечаем, что p1*z=p2, p1*z²=p3,..., p1*z^(n-1)=pn. Отсюда следует, что M[X]=d/dz∑pi=p1/(1-z)²=0,05/(0,05)²=1/0,05=20.
Теперь находим дисперсию. Используем формулу:
D[X]=M[X²]-M²[X]. Найдём M[X²]:
M[X²]=∑n²*pn=∑n²*p1*z^(n-1). Для нахождения суммы данного ряда возьмём ряд для M[X] и продифференцируем его:
d/dz∑n*p1*z^(n-1)=∑p1*n*(n-1)*z^(n-2)=∑p1*(n²-n)*z^(n-2)=∑p1*n²*z^(n-2)-∑p1*n*z^(n-2). Умножая теперь это равенство на z, получаем: z*dM[X]/dz=∑p1*n²*z^(n-1)-∑p1*n*z^(n-1). Отсюда ∑p1*n²*z^(n-1)=z*dM[X]/dz+∑p1*n*z^(n-1). Но так как М[X]=p1/(1-z)², то dM[X]/dz=2*p1/(1-z)³, откуда z*dM[X]/dz=2*p1*z/(1-z)³=760. Отсюда M[X²]=760+20=780 и D(X]=780-20²=380.
в) пусть событие А состоит в том, что поражения цели потребуется не менее 5 выстрелов. Рассмотрим противоположное событие В - потребуется менее 5 выстрелов. Так как события А и В несовместны и притом образуют полную группу, то P(A)+P(B)=1, откуда P(A)=1-P(B). Но P(B)=p1+p2+p3+p4=0,18549375. Отсюда P(A)=0,81450625.