Пусть х - короткая сторона, по которой ползла черепаха, тогда другая (более длинная) сторона пусть будет равна а*х, где а нам и необходимо найти. Черепаха преодолела расстояние х, а заяц за это время успел пробежать 3 полных периметра парка и один неполный (без стороны х, по которой шла черепаха) Периметр прямоугольника будет равен 2х+2ах=2х(1+а), тогда заяц преодолел 4*2х(1+а)-х, и по условию это расстояние в 47 раз больше, чем х. Составим уравнение 8х(1+а)-х=47х сокращаем х 8(1+а)-1=47 8(1+а)=48 1+а=6 а=5 ответ: в 5 раз короче
чтобы найти площадь диагонального сечения надо сначала найти диагональ, её можно найти по теореме пифагора. диагональ будет равна 5√2, следовательно площадь диагонального сечения будет равна 25√2 см2
а объем куба будет равен 5*5*5= 125 см3
Пошаговое объяснение:
Для геометрических тел с правильным многоугольником в основании можно провести диагональ последнего. Если эту линию спроецировать к вершине (для пирамиды) либо вершинам, например, для куба или параллелограмма, получим диагональное сечение объёмного тела. Если площадь куба вычисляется путём возведения длины стороны в квадрат, то с размером занимаемой сечением поверхности дело сложнее.
Секущая площадь куба имеет форму прямоугольника, где одна пара сторон представлена рёбрами кубика, вторая – диагоналями граней. Для вычисления её площади нужна только длина ребра правильного прямоугольника, ведь одна из них выполняет роль высоты. Длина диагонали для треугольников, где высота – это гипотенуза, а рёбра – катеты, определяется по формуле a*√2. Занимаемая диагональным сечением куба площадь равняется:
S = a * a * √2 = a²*√2.
Диагональное сечение куба - это прямоугольник, у него меньшая сторона совпадает с ребром, а большая - с диагональю грани (основания). Таким образом, чтобы найти площадь диагонального сечения куба, нужно воспользоваться формулой площади прямоугольника: S(пр) = a * b.
Черепаха преодолела расстояние х, а заяц за это время успел пробежать 3 полных периметра парка и один неполный (без стороны х, по которой шла черепаха)
Периметр прямоугольника будет равен 2х+2ах=2х(1+а),
тогда заяц преодолел 4*2х(1+а)-х, и по условию это расстояние в 47 раз больше, чем х. Составим уравнение
8х(1+а)-х=47х сокращаем х
8(1+а)-1=47
8(1+а)=48
1+а=6
а=5
ответ: в 5 раз короче
чтобы найти площадь диагонального сечения надо сначала найти диагональ, её можно найти по теореме пифагора. диагональ будет равна 5√2, следовательно площадь диагонального сечения будет равна 25√2 см2
а объем куба будет равен 5*5*5= 125 см3
Пошаговое объяснение:
Для геометрических тел с правильным многоугольником в основании можно провести диагональ последнего. Если эту линию спроецировать к вершине (для пирамиды) либо вершинам, например, для куба или параллелограмма, получим диагональное сечение объёмного тела. Если площадь куба вычисляется путём возведения длины стороны в квадрат, то с размером занимаемой сечением поверхности дело сложнее.
Секущая площадь куба имеет форму прямоугольника, где одна пара сторон представлена рёбрами кубика, вторая – диагоналями граней. Для вычисления её площади нужна только длина ребра правильного прямоугольника, ведь одна из них выполняет роль высоты. Длина диагонали для треугольников, где высота – это гипотенуза, а рёбра – катеты, определяется по формуле a*√2. Занимаемая диагональным сечением куба площадь равняется:
S = a * a * √2 = a²*√2.
Диагональное сечение куба - это прямоугольник, у него меньшая сторона совпадает с ребром, а большая - с диагональю грани (основания). Таким образом, чтобы найти площадь диагонального сечения куба, нужно воспользоваться формулой площади прямоугольника: S(пр) = a * b.