Если я правильно понял условие, то в одном равенстве можно использовать только один знак деления, и числа не должны повторяться в РАВЕНСТВАХ. Тогда из приведённого списка чисел делимыми не могут быть числа: 1) 9, так как у этого числа в списке только один отличный от 9,это число 3, но 9:3=3. В равенстве повторяется число 3. 2) числа 3, 7 и 2. Они простые, и делятся только сами на себя и на 1. 3) 4 - только один отличный от 4 делитель, число 2, но в равенстве 4:2=2 повторяется число 2. Значит, делимыми могут быть только 27, 32, 6, 21, 12, 8.Для каждого из этих 6 чисел получается по 2 допустимых равенства(всего 12): 27:9=3 и 27:3=9; 32:8=4 и 32:4=8; 6:3=2 и 6:2=3; 21:3=7 и 21:7=3; 12:2=6 и 12::=2; 8:2=4 и 8:4=2.
Тогда из приведённого списка чисел делимыми не могут быть числа:
1) 9, так как у этого числа в списке только один отличный от 9,это число 3, но 9:3=3. В равенстве повторяется число 3.
2) числа 3, 7 и 2. Они простые, и делятся только сами на себя и на 1.
3) 4 - только один отличный от 4 делитель, число 2, но в равенстве 4:2=2 повторяется число 2.
Значит, делимыми могут быть только 27, 32, 6, 21, 12, 8.Для каждого из этих 6 чисел получается по 2 допустимых равенства(всего 12):
27:9=3 и 27:3=9;
32:8=4 и 32:4=8;
6:3=2 и 6:2=3;
21:3=7 и 21:7=3;
12:2=6 и 12::=2;
8:2=4 и 8:4=2.
Если я правильно понял условие, то в одном равенстве можно использовать только один знак деления.
Тогда из приведённого списка чисел делимыми не могут быть числа:
1) 9, так как у этого числа в списке только один отличный от 9,
это число 3, но 9:3=3. В равенстве повторяется число 3.
2) числа 3, 7 и 2. Они простые, и делятся только сами на себя и на 1.
3) 4 - только один отличный от 4 делитель, число 2, но в равенстве 4:2=2 повторяется число 2.
Значит, делимыми могут быть только 27, 32, 6, 21, 12, 8.
Для каждого из этих 6 чисел получается по 2 допустимых равенства, кроме числа 12, для которого допустимых равенств - 4.
(всего 14):
27:9=3 и 27:3=9;
32:8=4 и 32:4=8;
6:3=2 и 6:2=3;
21:3=7 и 21:7=3;
12:2=6, 12:3=4, 12:4=3 и 12:6=2;
8:2=4 и 8:4=2.