Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508
1) 100+200+300+400+500+600+700+800+900+1000 = 100+900+200+800+300+700+400+600+1000+500=5500
2) 6+12+18+24+30+36+42+48+54+60+66+72+78+84+90+96= (96+24)+(90+30)+(84+36)+(78+42)+(72+48)+(66+54)+(12+18)+60+6= 120+120+120+120+120+120+30+66= 720+96=816
3) 99-97+95-93+91-89+87-85+83-81+79-77+75-73+71-69+67-65+63-61+59-57+55-53+51-49+47-45+43-41+39-37+35-33+31-29+27-25+23-21+19-17+15-13+11-9+7-5+3-1=2*25=50
4) 150+250+350+450+550+650+750+850+950= (850+150)+(750+250)+(650+350)+(550+450)+950=4950
5)5+10+15+20+25+30+35+40+45+50+55+60+65+70+75+80+85+90+95=(95+5)+(90+10)+(85+15)+(80+20)+(75+25)+(70+30)+(65+35)+(60+40)+(55+45)+50=950
6)101-99+97-95+93-91+89-87+85-83+81-79+77-75+73-71+69-67+65-63+61-59+57-55+53-51+49-47+45-43+41-39+37-35+33-31+29-27+25-23+21-19+17-15+13-11+9-7+5-3+1=2*25+1=51
Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508
1) 100+200+300+400+500+600+700+800+900+1000 = 100+900+200+800+300+700+400+600+1000+500=5500
2) 6+12+18+24+30+36+42+48+54+60+66+72+78+84+90+96= (96+24)+(90+30)+(84+36)+(78+42)+(72+48)+(66+54)+(12+18)+60+6= 120+120+120+120+120+120+30+66= 720+96=816
3) 99-97+95-93+91-89+87-85+83-81+79-77+75-73+71-69+67-65+63-61+59-57+55-53+51-49+47-45+43-41+39-37+35-33+31-29+27-25+23-21+19-17+15-13+11-9+7-5+3-1=2*25=50
4) 150+250+350+450+550+650+750+850+950= (850+150)+(750+250)+(650+350)+(550+450)+950=4950
5)5+10+15+20+25+30+35+40+45+50+55+60+65+70+75+80+85+90+95=(95+5)+(90+10)+(85+15)+(80+20)+(75+25)+(70+30)+(65+35)+(60+40)+(55+45)+50=950
6)101-99+97-95+93-91+89-87+85-83+81-79+77-75+73-71+69-67+65-63+61-59+57-55+53-51+49-47+45-43+41-39+37-35+33-31+29-27+25-23+21-19+17-15+13-11+9-7+5-3+1=2*25+1=51