В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Ghhgfgh
Ghhgfgh
02.06.2021 16:09 •  Математика

|x2 -4x-4| +4=2x решите уравнения методом, основанным на раскрытии модуля по определению.

Показать ответ
Ответ:
shubinaale
shubinaale
08.07.2020 14:08
1 случай
Если х² - 4х - 4≥0, то |x² - 4x - 4|= x²- 4x - 4
Уравнение принимает вид:
x²- 4x - 4 + 4 = 2х,
х² - 6х = 0,
х·(х - 6) = 0
х₁=0    или  х₂=6
Можно решить неравенство х² - 4х - 4≥0 и проверить входят ли корни в множество решений неравенства.
А можно просто подставить корни в неравенство:
при  х₁=0    получаем неравенство  0²-4·0-4≥0, которое неверно, так как -4≥0- неверно.
Значит х₁=0 не является корнем уравнения
при  х₂=6  получаем неравенство  6²-4·6-4≥0, которое верно 36-24-4=8, 8≥0
х₂=6- корень уравнения в 1) случае.

2 случай
Если х² - 4х - 4<0, то |x² - 4x - 4|= -(x²- 4x - 4)
Уравнение принимает вид:
-(x²- 4x - 4) + 4 = 2х,
-х² +4x +4+4-2x = 0,
-х² +2x+8 = 0,
x² - 2x - 8 = 0,
D=(-2)² - 4·(-8)=4+32=36
х₃ = (2-6)/2 = -2    или  х₄=(2+6)/2=4
Проверим, удовлетворяют ли  корни
х₃ =  -2    и  х₄=4 неравенству х² - 4х - 4<0

при  х₃= - 2    получаем неравенство  (-2)²-4·(-2)-4 < 0, которое неверно, так как    4+8-4=8,  8 < 0- не верно,
Значит х₃=- 2 не  является корнем уравнения

при  х₄= 4  получаем неравенство  4²-4·4-4 < 0, которое верно 16-16-4=-4, -4 < 0
Значит х₄=4   является корнем уравнения

x=4 корень уравнения во втором случае.
ответ. 4 ; 6
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота