Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
Пусть по кругу были записаны числа a,b,c,d,e. Тогда после применения операции из условия получатся числа b+e, a+c, b+d, c+e, a+d. Сумма новых чисел будет вдвое больше суммы начальных чисел. Ясно, что если проделать эту операцию четыре раза, то сумма полученных чисел вырастет (или уменьшится, если была отрицательной) в 2⁴=16 раз. Но сумма конечных чисел равна 170 и не делится на 16. Поскольку изначально все числа были целыми и их сумма была целой, это не возможно. Получили противоречие, а значит, указанных в условии чисел получиться не могло.
ответ: 6 см и 8 см
Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
x₁+х₂= -p,
x₁•x₂=q
ответ: нет, не могло.