C математикой мы встречаемся везде, на каждом шагу, с утра и до вечера. Просыпаясь, мы смотрим на часы; в трамвае или троллейбусе нужно рассчитаться за проезд; чтобы сделать покупку в магазине, нужно снова выполнить денежные расчеты и т. д. Без математики нельзя было бы изучить ни физику, ни географию, ни черчение. Летом мы все любим совершать различные походы по родному краю пешком или на плоту по реке. Разве не приходится и здесь делать расчеты? Если мы пошли в поход пешком, то нужно наметить маршрут по карте, измерить расстояние, а для этого нужно уметь пользоваться линейкой или каким-нибудь прибором, например курвиметром, нужно суметь вычислить длину маршрута, пользуясь масштабом. Но это еще не все. Необходимо произвести расчет продуктов, с тем чтобы не брать лишнего, чтобы питание было вкусное и разнообразное. Если решим плыть на плоту по реке, нужно определить длину маршрута, его продолжительность, скорость течения реки. Как это узнать? На приходит математика. Даже в игре без математики трудно. Чтобы организовать спортивные игры в пионерском лагере, нужно суметь разметить спортивную площадку, для чего необходимо знание геометрии (построение прямых углов на местности, вешение прямых, измерение расстояний рулеткой и т. д.). Чтобы выиграть в военной игре, нужно хорошо ориентироваться по компасу, знать, как определить высоту дерева, расстояние до недоступного предмета, ширину реки и пр. Мы живем в удивительное время: в нашей стране строятся гигантские электростанции и домны, автоматические заводы, построен атомный ледокол "Ленин", запускаются спутники и ракеты, тяжеловесные корабли штурмуют космическое пространство. Первый — Юрий Гагарин, а за ним целая плеяда героев-космонавтов облетели земной шар по космической трассе. Во всех этих делах нам всегда и математика. Наши ученые и инженеры создали такие вычислительные машины, которые за одну секунду могут выполнить десятки и сотни тысяч арифметических действий, что и позволило в кратчайшие сроки проделать сложнейшие технические расчеты, связанные со строительством различных сооружений, с полетами наших ракет, спутников, управляемых космических станций, космических кораблей с советскими героями на борту. Вычислительные машины не только освобождают человека от утомительных и однообразных операций (одна такая машина может заменить армию вычислителей в несколько десятков тысяч человек), не только ускоряют процесс вычислений, но и, это самое главное, могут управлять различными процессами производства, транспортом. Вычислительные машины настолько совершенны, что их часто называют "думающими". Это не случайно, ибо они могут быть использованы для переводов с одного языка на другой, могут играть в шахматы, причем достаточно успешно (об этом можно судить хотя бы по тому, что известный американский гроссмейстер Решевский в партии с вычислительной машиной смог добиться только ничьей). Но и всем этим их возможности не исчерпаны. С полным основанием можно сказать, что практические приложения математики не ограничены. Значит, математика нам нужна всюду: в магазине, в школе, в походе и в игре,в жизни. Почитай может мне очень Но сочинение чуть чуть на другую тему было
Графически (а в более сложных случаях и методом интервалов, но не в данной задаче) неравенства с тригонометрическими функциями решать как по мне наиболее удобный вариант – нужно только знать какие значения и где на окружности, если что я прикрепила свой может неаккуратный, но применимый для решения рисунок со значениями. Если что, синус угла x – ордината точки, что получена поворотом точки с координатами 1;0 вокруг начала координат на направленный угол x (направленный угол значит двигается против часовой стрелки положительный угол и по угол со знаком –)
А косинус угла х абсцисса точки, полученная аналогичным образом.
В этой задаче рисуем и получается, что единственное возможное пересечение (а так как у нас система, это и будет решением) – значение угла, чей синус равен 1/2, а косинус –√3/2, НО так как тут в системе строгие неравенства, то ответом является пустое множество.
Летом мы все любим совершать различные походы по родному краю пешком или на плоту по реке. Разве не приходится и здесь делать расчеты? Если мы пошли в поход пешком, то нужно наметить маршрут по карте, измерить расстояние, а для этого нужно уметь пользоваться линейкой или каким-нибудь прибором, например курвиметром, нужно суметь вычислить длину маршрута, пользуясь масштабом. Но это еще не все. Необходимо произвести расчет продуктов, с тем чтобы не брать лишнего, чтобы питание было вкусное и разнообразное.
Если решим плыть на плоту по реке, нужно определить длину маршрута, его продолжительность, скорость течения реки. Как это узнать? На приходит математика. Даже в игре без математики трудно. Чтобы организовать спортивные игры в пионерском лагере, нужно суметь разметить спортивную площадку, для чего необходимо знание геометрии (построение прямых углов на местности, вешение прямых, измерение расстояний рулеткой и т. д.). Чтобы выиграть в военной игре, нужно хорошо ориентироваться по компасу, знать, как определить высоту дерева, расстояние до недоступного предмета, ширину реки и пр.
Мы живем в удивительное время: в нашей стране строятся гигантские электростанции и домны, автоматические заводы, построен атомный ледокол "Ленин", запускаются спутники и ракеты, тяжеловесные корабли штурмуют космическое пространство. Первый — Юрий Гагарин, а за ним целая плеяда героев-космонавтов облетели земной шар по космической трассе. Во всех этих делах нам всегда и математика.
Наши ученые и инженеры создали такие вычислительные машины, которые за одну секунду могут выполнить десятки и сотни тысяч арифметических действий, что и позволило в кратчайшие сроки проделать сложнейшие технические расчеты, связанные со строительством различных сооружений, с полетами наших ракет, спутников, управляемых космических станций, космических кораблей с советскими героями на борту.
Вычислительные машины не только освобождают человека от утомительных и однообразных операций (одна такая машина может заменить армию вычислителей в несколько десятков тысяч человек), не только ускоряют процесс вычислений, но и, это самое главное, могут управлять различными процессами производства, транспортом. Вычислительные машины настолько совершенны, что их часто называют "думающими". Это не случайно, ибо они могут быть использованы для переводов с одного языка на другой, могут играть в шахматы, причем достаточно успешно (об этом можно судить хотя бы по тому, что известный американский гроссмейстер Решевский в партии с вычислительной машиной смог добиться только ничьей). Но и всем этим их возможности не исчерпаны. С полным основанием можно сказать, что практические приложения математики не ограничены.
Значит, математика нам нужна всюду: в магазине, в школе, в походе и в игре,в жизни.
Почитай может мне очень Но сочинение чуть чуть на другую тему было
ответ: Пустое множество!
Пошаговое объяснение:
Графически (а в более сложных случаях и методом интервалов, но не в данной задаче) неравенства с тригонометрическими функциями решать как по мне наиболее удобный вариант – нужно только знать какие значения и где на окружности, если что я прикрепила свой может неаккуратный, но применимый для решения рисунок со значениями. Если что, синус угла x – ордината точки, что получена поворотом точки с координатами 1;0 вокруг начала координат на направленный угол x (направленный угол значит двигается против часовой стрелки положительный угол и по угол со знаком –)
А косинус угла х абсцисса точки, полученная аналогичным образом.
В этой задаче рисуем и получается, что единственное возможное пересечение (а так как у нас система, это и будет решением) – значение угла, чей синус равен 1/2, а косинус –√3/2, НО так как тут в системе строгие неравенства, то ответом является пустое множество.