А) 12 и 32 наибольший общий делитель 4 (12:4=3 и 32:4=8) разложим на множители: 12=2*2*3 и 32=2*2*2*2*2 б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3) разложим на множители: 14=2*7 и 42=2*3*7 в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3) разложим на множители: 68= 2*2*17 и 102=2*3*17 г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223) разложим на множители: 480=2*2*2*2*2*3*5 669=3*223 д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся) разложим на множители: 23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7 для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7) е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12) разложим на множители: 21=7*3 и 126=2*3*3*7 и 252=2*3*3*7
Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
разложим на множители: 12=2*2*3 и 32=2*2*2*2*2
б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3)
разложим на множители:
14=2*7 и 42=2*3*7
в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3)
разложим на множители:
68= 2*2*17 и 102=2*3*17
г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223)
разложим на множители:
480=2*2*2*2*2*3*5 669=3*223
д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся)
разложим на множители:
23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7
для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7)
е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12)
разложим на множители:
21=7*3 и 126=2*3*3*7 и 252=2*3*3*7
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.