Я полагаю, что только(x+4) в квадрате, если это так, то: -18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя: x^2+8x+16=0 D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4. Теперь ищем дискриминант к числителю: 10x^2+80+178=0 D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.
-18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя:
x^2+8x+16=0
D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4.
Теперь ищем дискриминант к числителю:
10x^2+80+178=0
D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.
рассмотрим случаи, когда 2 туза не будет:
3 туза будут в одной из половин и 4 туза будут в одной из половин.
исходя из этих случаев можно сделать уравнение вероятности, что 2 тузов не будет в одной из двух половин.
одна половина равно 36 / 2 = 18
q1 = 3 / 18 = 1 / 8 = 0.125;
q2 = 4 / 18 = 2 / 9 = 0.22;
каждый случай следует рассматривать отдельно (независимые события).
значит в первом случае:
положительный исход будет
p1 = 1 - q1 = 1 - 0.125 = 0.875;
p2 = 1 - q2 = 1 - 0.22 = 0.78;
тогда общая вероятность будет равна
p = 0.875 * 0.78 = 0.6825
p = 68.25% - вероятность того, что в каждой половине будет по 2 туза.