К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателю
Например, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробей
Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробей
Тут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.
Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
Решение 1) 24 ч - 7 ч = 17 (ч) - находились в пути до встречи катер и моторная лодка. 2) v(скорость)=S(расстояние):t(время)=510:17=30 (км/ч) - скорость сближения. 3) 30-19=11 (км/ч) - скорость моторной лодки. 4) 11+19=30 (км/ч) - скорость удаления моторной лодки и катера. 5) 30*3=90 (км) - расстояние от катера до моторной лодки через 3 часа после встречи. ОТВЕТ: скорость моторной лодки равна 11 км/ч; расстояние от катера до моторной лодки через 3 часа после встречи 90 км.
1) 24 ч - 7 ч = 17 (ч) - находились в пути до встречи катер и моторная лодка. 2) S(расстояние)=v(скорость)*t(время)=19*17=323 (км) - проплыл за 17 часов катер. 3) 510-323=187 (км) - проплыла за 7 часов моторная лодка. 4) v=S:t=187:17=11 (км/ч) - скорость моторной лодки. 5) 11*3=33 (км) - за 3 часа после встречи проплыла моторная лодка. 6) 19*3=57 (км) - за 3 часа после встречи проплыла моторная лодка. 7) 33+57=90 (км) - расстояние от катера до моторной лодки через 3 часа после встречи. ОТВЕТ: скорость моторной лодки равна 11 км/ч; расстояние от катера до моторной лодки через 3 часа после встречи 90 км.
К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
1) 24 ч - 7 ч = 17 (ч) - находились в пути до встречи катер и моторная лодка.
2) v(скорость)=S(расстояние):t(время)=510:17=30 (км/ч) - скорость сближения.
3) 30-19=11 (км/ч) - скорость моторной лодки.
4) 11+19=30 (км/ч) - скорость удаления моторной лодки и катера.
5) 30*3=90 (км) - расстояние от катера до моторной лодки через 3 часа после встречи.
ОТВЕТ: скорость моторной лодки равна 11 км/ч; расстояние от катера до моторной лодки через 3 часа после встречи 90 км.
1) 24 ч - 7 ч = 17 (ч) - находились в пути до встречи катер и моторная лодка.
2) S(расстояние)=v(скорость)*t(время)=19*17=323 (км) - проплыл за 17 часов катер.
3) 510-323=187 (км) - проплыла за 7 часов моторная лодка.
4) v=S:t=187:17=11 (км/ч) - скорость моторной лодки.
5) 11*3=33 (км) - за 3 часа после встречи проплыла моторная лодка.
6) 19*3=57 (км) - за 3 часа после встречи проплыла моторная лодка.
7) 33+57=90 (км) - расстояние от катера до моторной лодки через 3 часа после встречи.
ОТВЕТ: скорость моторной лодки равна 11 км/ч; расстояние от катера до моторной лодки через 3 часа после встречи 90 км.