ответ:1 Две перпендикулярные координатные прямые, начала отсчета которых совпадают, называют осями координат, а точку их пересечения - началом координат
2 Координатная плоскость
3 Горизонтальная - абцисса
Вертикальная - ордината
4 Записывая координаты точки, на первое место всегда ставят абсциссу, а на второе - ординату.
5 Точки, абсциссы которых равны 0, лежат на оси у (ординат).
В 1-ой и 4-ой четвертях; во 2-ой и 3-ей четвертях.
6 Точки, ординаты которых равны 0, лежат на оси х (абсцисс).
В 1-ой и 2-ой четвертях; в 3-ей и 4-ой четвертях.
7 В декартовой системе координат, начало координат — это точка, в которой пересекаются все оси координат. Это означает, что все координаты этой точки равны нулю. Например, на плоскости она имеет координаты (0,0), а в трёхмерном находят на одинаковом расстоянии от оси ординатся (у)
А) например, подойдет 8, уравнение 3t^2 - 8t + 4 = 0 Вообще, если неизвестный коэффициент обозначить за u, то подойдет любое u, для которого дискриминант u^2 - 4 * 3 * 4 = u^2 - 48 > 0
в) Нужно написать многочлен, корни которого t = -t1 и t = -t2. Это может быть, например, многочлен (t + t1)(t + t2) = (t + 2/3)(t + 2) Самый простой построить такой многочлен, не вычисляя корней, – воспользоваться теоремой Виета и её обратной. Для противоположных корней сумма меняет знак, а произведение остается прежним, так что 3t^2 + 8t + 4 подходит.
ответ:1 Две перпендикулярные координатные прямые, начала отсчета которых совпадают, называют осями координат, а точку их пересечения - началом координат
2 Координатная плоскость
3 Горизонтальная - абцисса
Вертикальная - ордината
4 Записывая координаты точки, на первое место всегда ставят абсциссу, а на второе - ординату.
5 Точки, абсциссы которых равны 0, лежат на оси у (ординат).
В 1-ой и 4-ой четвертях; во 2-ой и 3-ей четвертях.
6 Точки, ординаты которых равны 0, лежат на оси х (абсцисс).
В 1-ой и 2-ой четвертях; в 3-ей и 4-ой четвертях.
7 В декартовой системе координат, начало координат — это точка, в которой пересекаются все оси координат. Это означает, что все координаты этой точки равны нулю. Например, на плоскости она имеет координаты (0,0), а в трёхмерном находят на одинаковом расстоянии от оси ординатся (у)
9 не знаю
10 не знаю
Пошаговое объяснение:
Вообще, если неизвестный коэффициент обозначить за u, то подойдет любое u, для которого дискриминант u^2 - 4 * 3 * 4 = u^2 - 48 > 0
б) D = 8^2 - 48 = 16 = 4^2
t = (8 +- 4)/6
t1 = (8 - 4)/6 = 2/3
t2 = (8 + 4)/6 = 2
в) Нужно написать многочлен, корни которого t = -t1 и t = -t2.
Это может быть, например, многочлен (t + t1)(t + t2) = (t + 2/3)(t + 2)
Самый простой построить такой многочлен, не вычисляя корней, – воспользоваться теоремой Виета и её обратной. Для противоположных корней сумма меняет знак, а произведение остается прежним, так что 3t^2 + 8t + 4 подходит.