Для решения данной задачи необходимо следующее неравенство:
(В первом случае)
(3x-1)/2-(1+5x)/4<0
{домножаем числитель и знаменатель первой дроби на 2}
(6x-2-1-5х)/4<0
или
6х-2-1-5х<0;
x-3<0;
x<3 ⇒ x∈(-∞;3)
(Во втором случае)
(1+5x)/4-(3x-1)/2<0
{домножаем числитель и знаменатель второй дроби на 2}
(1+5х-6х+2)/4<0
или прощения за мою возможную "тупость я не совсем поняла какая именно "разность" требуется ( судя по всему та, которая описывается в первом случае, но т.к. бывают на свете задачи разные, на "всякий пожарный" я решила и вторым решить). Если Вас это только больше запутало, извините и перепишите "первый случай".
1
Пошаговое объяснение:
1) y=(x2-5·x+8)^6
((x2-5·x+8)^6)' = (12·x-30)·(x2-5·x+8)^5
Поскольку:
((x2-5·x+8)^6)' = 6·(x2-5·x+8)^(6-1)((x2-5·x+8))' = (12·x-30)·(x2-5·x+8)^5
(x2-5·x+8)' = (x2)' + (-5·x)' + (8)' = 2·x + (-5) = 2·x-5
(x2)' = 2·x2-1(x)' = 2·x
(x)' = 1
(12·x-30)·(x2-5·x+8)^5
2) здесь не уверена
y=(sin(5·x2))^3
(sin(5·x2)^3)' = 30·x·sin(5·x2)^2·cos(5·x2)
Поскольку:
(sin(5·x2)^3)' = 3·(sin(5·x2))^(3-1)((sin(5·x2)))' = 30·x·sin(5·x2)^2·cos(5·x2)
(sin(5·x2))' = (sin(5·x2))'(5·x2)' = 10·x·cos(5·x2)
(5·x2)' = 5·2·x2-1(x)' = 10·x
(x)' = 1
30·x·sin(5·x2)^2·cos(5·x2)
При вычислении были использованы следующие правила дифференцирования:
(xa)' = axa-1
(a)' = 0
(f(g(x)))' = f(x)'*g(x)'
3) на картинке решить во жизни и смерти ">
Пошаговое объяснение:Объяснение:
Для решения данной задачи необходимо следующее неравенство:
(В первом случае)
(3x-1)/2-(1+5x)/4<0
{домножаем числитель и знаменатель первой дроби на 2}
(6x-2-1-5х)/4<0
или
6х-2-1-5х<0;
x-3<0;
x<3 ⇒ x∈(-∞;3)
(Во втором случае)
(1+5x)/4-(3x-1)/2<0
{домножаем числитель и знаменатель второй дроби на 2}
(1+5х-6х+2)/4<0
или прощения за мою возможную "тупость я не совсем поняла какая именно "разность" требуется ( судя по всему та, которая описывается в первом случае, но т.к. бывают на свете задачи разные, на "всякий пожарный" я решила и вторым решить). Если Вас это только больше запутало, извините и перепишите "первый случай".