Сразу скажу, что условие скорей всего неправильное. Для такой задачи треугольник должен был быть равнобедренным. Но если это не так, то я решила по тому условию, которое Вы дали:
Есть 2 варианта решения этой задачи.
1) если стороны, о которых идёт речь - катеты
тогда 1 катет - а, второй - 11а
тогда гипотенуза: корень из (121a^2+a^2) =а*корень из 122
получаем:
a+11a+a*корень из 22 = 144
а*(1+11+корень из 122)=144
a=144/(12+корень из 122) (это одна сторона)
тогда вторая сторона: 144*11/(12+корень из 122)=1584/(12+корень из 122)
третья: (144*корень из 122)/(12+корень из 122)
2) если одна сторона - катет, пусть он будет a, вторая гипотенуза 11а
тогда третья сторона : корень из (121а^2-a^2)=а*(корень из 120)= 2а*корень из 30
составляем уравнение:
a+11a+2a*корень из 30 = 144
12а+2а*корень из 30 = 144
2а(6+корень из 30) = 144
а=144/(2*(6+корень из 30)) = 72/(6+корень из 30)
тогда вторая сторона 72*11/(6+корень из 30)= 792/(6+корень из30)
третья сторона ( 144*корень из30)/(6+корень из 30)
Сразу скажу, что условие скорей всего неправильное. Для такой задачи треугольник должен был быть равнобедренным. Но если это не так, то я решила по тому условию, которое Вы дали:
Есть 2 варианта решения этой задачи.
1) если стороны, о которых идёт речь - катеты
тогда 1 катет - а, второй - 11а
тогда гипотенуза: корень из (121a^2+a^2) =а*корень из 122
получаем:
a+11a+a*корень из 22 = 144
а*(1+11+корень из 122)=144
a=144/(12+корень из 122) (это одна сторона)
тогда вторая сторона: 144*11/(12+корень из 122)=1584/(12+корень из 122)
третья: (144*корень из 122)/(12+корень из 122)
2) если одна сторона - катет, пусть он будет a, вторая гипотенуза 11а
тогда третья сторона : корень из (121а^2-a^2)=а*(корень из 120)= 2а*корень из 30
составляем уравнение:
a+11a+2a*корень из 30 = 144
12а+2а*корень из 30 = 144
2а(6+корень из 30) = 144
а=144/(2*(6+корень из 30)) = 72/(6+корень из 30)
тогда вторая сторона 72*11/(6+корень из 30)= 792/(6+корень из30)
третья сторона ( 144*корень из30)/(6+корень из 30)
Здесь мы обсудим, что такое отношение чисел и что показывает отношение двух чисел.
1. Частное двух чисел называют отношением этих чисел.
Отношение чисел можно записать двумя с знака деления либо с дроби:
или
Читают: «отношение a к b».
Числа a и b называют членами отношения.
a — предыдущий член отношения, b — последующий член отношения. a и b должны быть отличны от нуля.
2. Отношения используют для сравнения двух величин.
Отношение показывает, во сколько раз первое число больше второго либо какую часть первое число составляет от второго.
Примеры отношения чисел:
1) 120:3=40
Отношение 120:3 показывает, что 120 в сорок раз больше 3.
Отношение 3/5 показывает, что 3 составляет 0,6 от 5.
3. Основное свойство отношения:
Отношение не изменится, если его члены умножить или разделить на одно и то же число, отличное от нуля.
(основное свойство отношения вытекает из основного свойства дроби).
Например,
Таким образом, отношение дробных чисел можно заменить отношением целых чисел.
4. Примеры отношения величин.
- скорость (отношение пройденного пути ко времени, за которое путь был пройден);
- производительность труда (отношение объема работы ко времени, за которое выполняется работа);
- цена ( отношение стоимости товара к количеству единиц);
- масштаб (отношение длины отрезка на карте к расстоянию между соответствующими точками на местности);
- урожайность (отношение массы собранного урожая к общей площади полей, с которой был собран урожай).
Далее мы рассмотрим равенство двух отношений и его практическое применение.