б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
а) 2, 2, 2, 2
б) Здесь 1 заведомо есть, а 22 должно быть суммой всех чисел набора. Тогда, если 1 не брать, получится сумма 21, а её в списке нет. Значит, такого примера не существует.
в) Число 9 есть, а меньших нет, поэтому 10 и 11 непременно должны быть в наборе. Суммы 19, 20, 21 при этом будут встречаться, а никаких чисел от 12 до 18 включительно в наборе быть не может. Число 22 могло получиться или по причине его наличия в наборе, или как сумма меньших, но тогда это только 11+11. В первом случае получаем набор 9, 10, 11, 22, где сумма равна 52, и он не может содержать других чисел. Это один из вариантов, и он удовлетворяет условию. В случае, когда 11 повторяется, до общей суммы 52 не хватает 11, то есть 11 должно присутствовать трижды. Набор чисел 9, 10, 11, 11, 11 также удовлетворяет условию: все суммы из предыдущего варианта в нём встречаются, а новых, как легко убедиться, нет. Таким образом, условию удовлетворяют ровно два набора, указанные выше.
Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч