В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Andrey7745
Andrey7745
07.03.2022 05:36 •  Математика

Які риси характеру лограна заслуговують на повагу? будь ласка! !

Показать ответ
Ответ:
mamarozovap0c9td
mamarozovap0c9td
10.12.2021 07:06
Х и у ---цифры (от 0 --- 9), x≠0 (тогда число будет однозначное)))
х+у > xy
x + y - xy > 0
x + y(1-x) > 0
x > y(x-1)
если х=1, то условие выполнится для любых (у),
т.к. у+1 > у*1 всегда
теперь т.к. х-1 > 0,
можно разделить обе части неравенства на положительное число...
y < x / (x - 1)
y < 1 + (1/(x-1))
если х=2, то условие выполняется для y < 2? т.е. у=1
если х=3, то условие выполняется для y < 1+1/2, т.е. у=1
Итак, действительно, иногда условие выполняется:
для любых цифр, если вторая цифра равна 1
0,0(0 оценок)
Ответ:
kotyaraasm
kotyaraasm
10.11.2020 17:47
Уравнение касательной к графику дифференцируемой функции y=f(x) в точке с координатами (x0,y0) имеет вид:
Y- y_{0}=f'(x)*(X- x_{0} ) , где X,Y - текущие координаты касательной (это уравнение следует из уравнения прямой с угловым коэффициентом, проходящей через некоторую точку).

Абсцисса точки, через которую проходит касательная, нам дана. Найдём ординату этой точки:
y_{0} =-cos(5* x_{0} + \frac{ \pi }{4} )-4=-cos(5*0 + \frac{ \pi }{4} )-4=- \frac{ \sqrt{2} }{2}-4.

Теперь найдём первую производную данной функции в точке x0:
y' =(-cos(5x + \frac{ \pi }{4} )-4)'=-(cos(5x+\frac{ \pi }{4}))'=5*sin(5x+\frac{ \pi }{4})
y'(x_{0})=5*sin(5* x_{0} +\frac{ \pi }{4})=5*sin(5*0+\frac{ \pi }{4})=5 *\frac{ \sqrt{2} }{2}

Подставим x0, y0, y'(x0) в Y- y_{0}=f'(x)*(X- x_{0} ):
Y-(- \frac{ \sqrt{2} }{2}-4 )=(5 *\frac{ \sqrt{2} }{2})*(X-0 ) \\ Y+4=- \frac{ \sqrt{2} }{2}+5*X *\frac{ \sqrt{2} }{2} \\ Y+4=\frac{ \sqrt{2} }{2}*(5X-1) 

Это и будет уравнение касательной к графику данной функции в требуемой точке.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота