Угол между прямой и плоскостью – это угол между прямой и её проекцией на данную плоскость.Проведем АН ⊥ ВС.
Так как треугольник АВС –равносторонний, то АН –высота и медиана треугольника АВС.
НН1 ⊥ АВС ( призма правильная, значит боковые ребра перпендикулярны пл. основания, НН1 || BB1).
Значит AH, перпендикулярная двум пересекающимся прямым ВС и НН1 плоскости ВВ1С1С, перпендикулярна пл.ВВ1С1С ⇒
АН⊥ пл. ВВ1С1С
Тогда отрезок С1Н – проекция прямой АС1 на эту плоскость и искомый угол – угол АС1Н.
сos(∠AC1H)= С1Н/АС1.
По теореме Пифагора диагональ боковой граний АС1=√2 и из прямоугольного треугольника С1СН (СС1=1,СН=1/2)по теореме Пифагора С1Н=√5/2
сos(∠AC1H)=(√5/2)/√2 = √10/4.
ответ:сos(∠AC1H)=√10/4.
Пошаговое объяснение:
Угол между прямой и плоскостью – это угол между прямой и её проекцией на данную плоскость.Проведем АН ⊥ ВС.
Так как треугольник АВС –равносторонний, то АН –высота и медиана треугольника АВС.
НН1 ⊥ АВС ( призма правильная, значит боковые ребра перпендикулярны пл. основания, НН1 || BB1).
Значит AH, перпендикулярная двум пересекающимся прямым ВС и НН1 плоскости ВВ1С1С, перпендикулярна пл.ВВ1С1С ⇒
АН⊥ пл. ВВ1С1С
Тогда отрезок С1Н – проекция прямой АС1 на эту плоскость и искомый угол – угол АС1Н.
сos(∠AC1H)= С1Н/АС1.
По теореме Пифагора диагональ боковой граний АС1=√2 и из прямоугольного треугольника С1СН (СС1=1,СН=1/2)по теореме Пифагора С1Н=√5/2
сos(∠AC1H)=(√5/2)/√2 = √10/4.
ответ:сos(∠AC1H)=√10/4.
Пошаговое объяснение:
периметр квадрата →(6/7)x * * * или 6/7) часть * *
периметр треугольника →(6/7)x *(3/4) = (9/14 ) x * * * (9/14) часть* * * .
x + (6/7)x + (9/14 )x =70 ;
(1+6/7 +9/14) x =70 ;
(35/14) x =70 ;
x =70 : (35/14) * * * =70 *14/35 = 70*14 /35 =2*14 =28 * * *
x =28 (см).
ответ :
Периметр прямоугольника 28 см ;
периметр квадрата 28 см*(6/7) =24 см ;
периметр треугольника 24 см* 3/4 =18 см (или 28 см *(9/14) =18 см.
1). 1 +6/7 +9/18 =35 /14 ;
2). 70 : (35/14) =28 и т.д.