Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40": ; В итоге получим следующее уравнение: . В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо будет стоять ; Это приведет к тому, что придется убавить ; В итоге: ; Слева стоит квадрат суммы. Уравнение примет вид: ; Сворачивая еще раз: ; Получаем серию прямых: ; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую ; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. ; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты ; Ну а все решения:
1) Пусть количество джипов=х, тогда после обмена количество джипов сократилось на 10% , т.е. стало 100%-10%=90% =0,9х (90%:100%=0,9) джипов. 2) Количество джипов и спорткаров вначале было поровну, т.е. х. После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров. 3) Спорткаров стало больше, чем джипов на 14 штук: 1,25х-0,9х=14 0,35х=14 х=40 (спорткаров и 40 джипов было изначально). 4) Посчитаем количество спорткаров после обмена: 1,25х=1,25*40=50 ответ: после обмена у Сидорова стало 50 спорткаров.
Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40": ; В итоге получим следующее уравнение: . В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо будет стоять ; Это приведет к тому, что придется убавить ; В итоге: ; Слева стоит квадрат суммы. Уравнение примет вид: ; Сворачивая еще раз: ; Получаем серию прямых: ; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую ; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. ; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты ; Ну а все решения:
2) Количество джипов и спорткаров вначале было поровну, т.е. х.
После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров.
3) Спорткаров стало больше, чем джипов на 14 штук:
1,25х-0,9х=14
0,35х=14
х=40 (спорткаров и 40 джипов было изначально).
4) Посчитаем количество спорткаров после обмена:
1,25х=1,25*40=50
ответ: после обмена у Сидорова стало 50 спорткаров.