В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
sysfzd
sysfzd
15.04.2023 19:06 •  Математика

Якласс решение сделайте , голые ответы не нужны

Показать ответ
Ответ:
alekss1234
alekss1234
23.06.2020 22:05

делала а вы а вот в таком же формате нужно сделать чтобы я шла туда не знаю они не хотят платить за это время я нахожусь на почту же в приложении в геометрии и в геометрии у

Пошаговое объяснение:

не тебя есть какие-то пожелания не нужно на почту свою жизнь в группу челиков как ты кушаешь в геометрии нечего не могу найти у меня есть несколько предложений не могу зайти в личный телефон и адрес райымбека не могу зайти в школе на заказ в работу не было возможности отправить личное мнение не знаю как у нас в наличии и по поводу видео с

0,0(0 оценок)
Ответ:
Stupidpeoplenamber1
Stupidpeoplenamber1
25.03.2022 23:23

ответ:Когда множества A и B конечны и содержат небольшое число элементов, найти их декартово произведение несложно. А если множества бесконечны? В математике нашли выход из этой ситуации. Наглядное изображение декартова произведения двух числовых множеств можно получить при координатной плоскости. Прямоугольная система координат позволяет каждой точке плоскости поставить в соответствие единственную пару действительных чисел – координаты этой точки. Понятие координат точек на прямой и на плоскости было впервые введено в геометрию французским ученым и философом Рене Декартом в XVII веке. Это событие явилось началом новой эры в математике – эры рождения и развития понятий функции и геометрического преобразования. По имени Рене Декарта прямоугольные координаты на плоскости называют еще декартовыми.

Но как связано с именем Декарта, жившего в XVII веке, понятие декартова произведения множеств, введенное в математику в конце XIXвека? Чтобы ответить на этот во выясним сначала, как используют прямоугольную систему координат для наглядного представления декартова произведения двух числовых множеств.

Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.

Изобразим на координатной плоскости декартово произведение множеств А и В, если:

1) А = {1, 2, 3}, B = {3, 5};

2) A = {1, 2, 3}, B = [3, 5];

3) A = [1, 3], B = [3, 5];

4) A = R, B = [3, 5];

5) A = R, B = R.

В случае 1 данные множества конечны и содержат небольшое число элементов, поэтому можно перечислить все элементы их декартова произведения: А × В = {(1; 3), (1; 5), (2; 3), (2; 5), (3; 3), (3; 5)}.

Построим оси координат и на оси Ox отметим элементы множества А, а на оси - элементы множества В. Затем изобразим каждую пару чисел из множества А × В точкой на координатной плоскости. Полученная фигура из шести точек и будет наглядно представлять декартово произведение множеств А и В (рис. 1).

В случае 2 перечислить все элементы декартова произведения множеств невозможно, поскольку множество В бесконечное. Но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 1, либо 2, либо 3, а вторая компонента – действительное число из промежутка [3; 5]. Все пары, первая компонента которых есть число 1, а вторая пробегает значения от 3 до 5 включительно, изображаются точками первого отрезка. Аналогично строятся два других отрезка

Пошаговое объяснение:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота