З а Г а д Ки::: Загадкове,нам знайоме,в нього є щось невідоме ..Нам вони допомагають,дій порядок визначаютьСк.в мене квіток,, якщо всі,крім двох троянди,всі крім двох тюльпани,всі,крім двох нарциси?
4^х+1 - 6^х ≥ 2 * 3^2х+2<br />2^2(х+1) - 2^х *3^x≥ 2 * 3^2(х+1)<br />4*2^2х - 2^х *3^x≥ 18 * 3^2х<br />разделим все на 3^2х<br />4*(2/3)^2х - (2/3)^х ≥ 18<br />заменим y=(2/3)^х<br />4y²-y-18≥0<br />D=1+4*4*18=289<br />√D=17<br />y1=(1-17)/8=-2<br />у2=(1+17)/8=18/8=9/4<br />(у+2)(у-9/4)≥0 <br /> у принадлежит интервалу (-∞,-2]и[9/4;+∞) <br /> вспоминаем, что у должен быть >0 по определению, так как стереть положительного числа всегда положительна. <br /> Поэтому у принадлежит [9/4;+∞) <br /> (2/3)^х=9/4<br />(2/3)^х=(3/2)^2<br />(2/3)^х=(2/3)^(-2)<br /> ответ х принадлежит интервалу [-2;+∞) или иначе говоря х≥-2
Площа повної поверхні прямої призми:
Sп=2Soc+Sb.
В основі прямої призми лежить рівнобічна трапеція з основами AD=4 см і BC=10 см і бічною стороною AB=CD=5 см.
трапеція
Знайдемо висоту DL трапеції.
Із прямокутного трикутника DLC (∠DLC=90, бо DL⊥BC, CD=5 см – гіпотенуза і CL=3 см – катет) знайдемо катет DL.
DL2=CD2-CL2, звідси
Площа основи – трапеції ABCD:
Периметр основи:
Poc=AB+BC+CD=2•5+10+4=24 см.
Площа бічної поверхні:
Sб=Poc•h=24•10=240 см2.
Площа повної поверхні прямої призми:
Sп=2Soc+Sb=2•28+240=296 см2.
Відповідь: 296 см2
Пошаговое объяснение: