З одного пункту одночасно в протилежних напрямках вирушили два катера. Один рухався зі швидкістю 12 км/год, а другий - зі швидкістю в 2 рази більшою. Яка відстань буде між ними через 6 год після початку руху? ( У відповідь внесіть лише число ).
Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.
К рациональным числам относятся следующие категории чисел:
целые числа (например −2, −1, 0 1, 2 и т.д.)
обыкновенные дроби (например одна вторая, одна третья, три четвёртых и т.п.)
смешанные числа (например две целых одна вторая, одна целая две третьих, минус две целых одна третья и т.п.)
десятичные дроби (например 0,2 и т.п.)
бесконечные периодические дроби (например 0,(3) и т.п.)
Каждое число из этой категории может быть представлено в виде дроби a разделить на b .
Примеры:
Пример 1. Целое число 2 может быть представлено в виде дроби две первых . Значит число 2 относится не только к целым числам, но и к рациональным.
Пример 2. Смешанное число две целых одна вторая может быть представлено в виде дроби пять вторых. Данная дробь получается путём перевода смешанного числа в неправильную дробь
перевод двух целых одной второй в неправильную дробь
Значит смешанное число две целых одна вторая относится к рациональным числам.
Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби две десятых . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.
Поскольку десятичная дробь 0,2 может быть представлена в виде дроби две десятых , значит она тоже относится к рациональным числам.
Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых. Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.
Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых , значит она тоже относится к рациональным числам.
В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.
Имеются брёвна по 4 и по 5 м. Сколько брёвен каждого вида надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов ?
4n+5k=42, k - должно быть четным , иначе 4n+5k - нечетное,
4n должно оканчиваться на 2 (12, 32, 52, 72..), т.к. надо получить 42 бревна по 1 м ⇒4n может быть (12, 32). Тогда 5k должно , быть...(30, 10 ), соответственно.
если 4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7
если 4n=32 ⇒n=8 5k=2 ⇒k=6 число распилов n-1+(k-1)=8
сравниваем, получаем:
3 4х метровых бревна и 6 5ти метровых бревна надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов.
Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.
К рациональным числам относятся следующие категории чисел:
целые числа (например −2, −1, 0 1, 2 и т.д.)
обыкновенные дроби (например одна вторая, одна третья, три четвёртых и т.п.)
смешанные числа (например две целых одна вторая, одна целая две третьих, минус две целых одна третья и т.п.)
десятичные дроби (например 0,2 и т.п.)
бесконечные периодические дроби (например 0,(3) и т.п.)
Каждое число из этой категории может быть представлено в виде дроби a разделить на b .
Примеры:
Пример 1. Целое число 2 может быть представлено в виде дроби две первых . Значит число 2 относится не только к целым числам, но и к рациональным.
Пример 2. Смешанное число две целых одна вторая может быть представлено в виде дроби пять вторых. Данная дробь получается путём перевода смешанного числа в неправильную дробь
перевод двух целых одной второй в неправильную дробь
Значит смешанное число две целых одна вторая относится к рациональным числам.
Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби две десятых . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.
Поскольку десятичная дробь 0,2 может быть представлена в виде дроби две десятых , значит она тоже относится к рациональным числам.
Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых. Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.
Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых , значит она тоже относится к рациональным числам.
В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.
4n+5k=42, k - должно быть четным , иначе 4n+5k - нечетное,
4n должно оканчиваться на 2 (12, 32, 52, 72..), т.к. надо получить 42 бревна по 1 м ⇒4n может быть (12, 32). Тогда
5k должно , быть...(30, 10 ), соответственно.
если
4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7
если
4n=32 ⇒n=8 5k=2 ⇒k=6 число распилов n-1+(k-1)=8
сравниваем, получаем:
3 4х метровых бревна и 6 5ти метровых бревна надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов.
4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7