З пункту А до пункту В зі швидкістю 12 км/год виїхав велосипедист. Через
3 год з пункту В до пункту А виїхав мотоцикліст зі швидкістю 45 км/год.
Скільки годин до зустрічі з мотоциклістом їхав велосипедист, якщо
відстань від А до В становить 235,5 км? На якій відстані від пункту А
відбулася їх зустріч?
число которое делится на 10
НЕТ. Признак делимости на 10; число должно оканчиваться нулем, его нет в числах.
чётное число
ДА. 34; если можно с повтором то (34; 334; 34344; 3333334444443334; любое) то есть четное число это то, которое заканчивается на (2;4;6;8;0) вконце ставим 4 что у нас есть
число кратное 5
НЕТ. Число кратное 5, должно заканчиваться на ноль или 5; у нас нет (0; 5).
нечетное число
ДА. Вконце ставим нечетную цифру 3; нечетные (1;3;5;7;9), среди них есть 3; число 43; если с повтором то (43; 4444433343; 43433; 4433343)
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
Отсюда: ;
;
;
О т в е т :