Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.
1 см³ - 100 мм³ = 1.000 мм³ - 100 мм³ = 900 мм³ = 0,9 см³
1 дм³ - 200 см³ = 1 дм³ - 0,2 дм³ = 0,8 дм³
100 м² + 2 га = 100 м² + 20.000 м² = 20.100 м²
800 а : 2 = 400 а
1 000 см³ - 1 дм³ = 1.000 см³ - 1.000 см³ = 0 см³
400 м² : 4 = 100 м²
200 дм³ + 100 м³ = 200 дм³ + 100.000 дм³ = 100.200 дм³
10 см³ + 1.000 см³ = 1.010 см³
5 м³ : 100 дм³ = 5.000 дм³ : 100 дм³ = 50 дм³ = 0,05 м³
500 м³ + 100 дм³ = 500.000 дм³ + 100 дм³ = 500.100 дм³ = 500,1 м³
5 м³ + 100 дм³ = 5.000 дм³ + 100 дм³ = 5.100 дм³ = 5,1 м³
50 м² + 100 дм² = 5.000 дм² + 100 дм² = 5.100 дм² = 50,1 м²
Пошаговое объяснение:
Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.