Чтобы определить, можно ли записать данную обыкновенную дробь в виде конечной десятичной дроби, необходимо сначала сократить её. потом разложить знаменатель дроби на простые множители. если разложение будет состоять только из степеней цифр 2 и 5, то такую дробь можно записать в виде конечной десятичной дроби. 17/600 – нельзя представить в виде конечной десятичной дроби, так как 600 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5 ∙ 5. 2) 14/125 = 0,112, так как 125 = 5 ∙ 5 ∙ 5; 3) 17/200 = 0,085, так как 200 = 2 ∙ 2 ∙ 2 ∙ 5 ∙ 5; 4) 51/105 = 17/35 – нельзя представить в виде конечной десятичной дроби, так как 35 = 5 ∙ 7.
Пусть вершины треугольника: А(-1;5), В(4;4) и С(6;-1). Площадь треугольника ABC - это половина площади параллелограмма, построенного на векторах АВ и АС. Площадь параллелограмма, построенного на векторах АВ и АС, это МОДУЛЬ векторного произведения этих векторов. Найдем координаты векторов АВ и АС. Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. Тогда вектор AB{5;-1}, вектор АС{7;-6}. Формула векторного произведения векторов, это определитель: |i j k | [а*b]= |ax ay az| = i(ay*bz-az*by) - j(ax*bz-az*bx) + k(ax*by-ay*bx). |bx by bz| Найдем векторное произведение векторов АВ{5;-1;0} и AC{7;-6;0}: |i j k| [АВ*AС]= |5 -1 0| = i(0-0) - j(0-0) + k(-30-(-7)) = -23. |7 -6 0| Модуль этого произведения равен 23, а его половина равна 11,5. ответ: площадь треугольника Sabc = 11,5.
Для проверки. Есть формула вычисления площади треугольника, заданного координатами вершин на плоскости: S=0,5[(Xa-Xc)(Yb-Yc)-(Xb-Xc)(Ya-Yc)]. (берется положительное значение, то есть модуль ответа) В нашем случае Sabc=0,5*[(-35)-(-12)]=11,5.
Площадь треугольника ABC - это половина площади параллелограмма, построенного на векторах АВ и АС. Площадь параллелограмма, построенного на векторах АВ и АС, это МОДУЛЬ векторного произведения этих векторов.
Найдем координаты векторов АВ и АС.
Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
Тогда вектор AB{5;-1}, вектор АС{7;-6}.
Формула векторного произведения векторов, это определитель:
|i j k |
[а*b]= |ax ay az| = i(ay*bz-az*by) - j(ax*bz-az*bx) + k(ax*by-ay*bx). |bx by bz|
Найдем векторное произведение векторов АВ{5;-1;0} и AC{7;-6;0}:
|i j k|
[АВ*AС]= |5 -1 0| = i(0-0) - j(0-0) + k(-30-(-7)) = -23.
|7 -6 0|
Модуль этого произведения равен 23, а его половина равна 11,5.
ответ: площадь треугольника Sabc = 11,5.
Для проверки.
Есть формула вычисления площади треугольника, заданного координатами вершин на плоскости:
S=0,5[(Xa-Xc)(Yb-Yc)-(Xb-Xc)(Ya-Yc)]. (берется положительное значение, то есть модуль ответа)
В нашем случае Sabc=0,5*[(-35)-(-12)]=11,5.