Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
Пошаговое объяснение:
мВсе Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
ответ: 6 см и 8 см
Пошаговое объяснение: Примем одну сторону прямоугольника х, тогда вторая – 14-х.
Площадь прямоугольника равна произведению его сторон. ⇒
х•(14-х)=48, откуда после нескольких действий получим х²-14х+48=0. По т. Виета х₁+х₂=14, х₁•х₂=48. Число 14 можно разложить на 7 и 2, но тогда 7•2≠48. следовательно, стороны прямоугольника 6 и 8 (сумма 14, их произведение 48)
По т.Виета сумма корней в приведенном квадратном уравнении
x²+p⋅x+q=0
будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е.
x₁+х₂= -p,
x₁•x₂=q
Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
Пошаговое объяснение:
мВсе Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все