В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mooziviycom
mooziviycom
05.10.2020 12:57 •  Математика

за 3 задания,с объяснением ​


за 3 задания,с объяснением ​

Показать ответ
Ответ:
posadskivladislav
posadskivladislav
01.05.2022 03:43
... Я был в его группе Pascaly, которые дают представления в Черновцах. Еминеску, суфлер, с некоторыми пешеходных ботинках разбитых в горе им кое-какую одежду. И он заметил, Pascaly директор. -Я Замечание? -Нет. Я спросил, если он не имеет ничего лучше. Я ответил, что поэт имеет. -Ну, Купить ваши ... - Чтобы купить мне ... Но я пятаков. -Poftim Пятьдесят леев ... Позволь мне жить сегодня с обувью и одеждой! Вы понимаете? -Я Поймите, ответил Эминеску, которые берут деньги и покинуть город. Когда он вернулся вечером, я беру короткий Pascaly: Вы купили одежду и ботинки, сэр? Да! -Где? -Look Их. И дал полное собрание сочинений Гете и Гейне. Посмотрите, сапоги и одежда ... Дополнен 4 года назад

Это была красота! Классический рисунок, обрамленный какой-нибудь большой волосатая, черная. Высокий лоб и безмятежный, некоторые крупные глаза ...- окна души; ... Нежный улыбка и глубокую меланхолию. Он имел вид молодого святого, происходил из древней иконой, ребенок предопределил боли, которые видят надпись на лице будущей мучений. -Я Рекомендуют Михая Эминеску! Так что я знал, я ...
0,0(0 оценок)
Ответ:

y'' - 2y' + 5y = e^{2x}

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является y = y^{*} +\widetilde{y}.

1) y^{*} — общее решение соответствующего линейного однородного дифференциального уравнения:

y'' - 2y' + 5y = 0

Применим метод Эйлера: сделаем замену y = e^{kx}, где k — некоторая постоянная. Тогда y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Получили характеристическое уравнение:

k^{2}e^{kx} - 2ke^{kx} + 5e^{kx} = 0

Разделим обе части уравнения на e^{kx}:

k^{2} - 2k + 5 = 0

D = (-2)^{2} - 4 \cdot 1 \cdot 5 = 4 - 20 = -16

Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

k_{1,2} = \dfrac{2 \pm \sqrt{-16}}{2 \cdot 1} = \dfrac{2 \pm \sqrt{16} \cdot \sqrt{-1}}{2} = \dfrac{2 \pm 4i}{2} = 1 \pm 2i

Тогда y^{*}_{1} = e^{(1 + 2i)x}, \ y^{*}_{2} = e^{(1 - 2i)x}

Воспользуемся формулой Эйлера: e^{i \varphi} = \cos \varphi + i\sin \varphi

Фундаментальная система решений: y^{*}_{1} = e^{x}\cos 2x, \ y_{2}^{*} = e^{x}\sin 2x — функции линейно независимые, поскольку \dfrac{y_{1}^{*}}{y_{2}^{*}} = \dfrac{e^{x}\cos 2x}{e^{x}\sin 2x} = \text{ctg} \, 2x \neq \text{const}

Общее решение: y^{*} = C_{1}y_{1}^{*} + C_{2}y_{2}^{*} = C_{1}e^{x}\cos 2x + C_{2}e^{x}\sin 2x

2) \widetilde{y} — частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции f(x).

Здесь f(x) = e^{2x}, причем \alpha = 2 \neq k_{1,2}, поэтому частное решение имеет вид \widetilde{y} = Ae^{2x}, где A — неизвестный коэффициент, который нужно найти.

Тогда \widetilde{y}' = 2Ae^{2x}, \ \widetilde{y}'' = 4Ae^{2x} и \widetilde{y} = Ae^{2x} подставим в исходное ЛНДР и найдем A:

4Ae^{2x} - 2 \cdot 2Ae^{2x} + 5 \cdot Ae^{2x} = e^{2x}

Разделим обе части уравнения на e^{2x}

4A - 4A+ 5A = 1

A = \dfrac{1}{5}

Таким образом, частное решение: \widetilde{y} = \dfrac{1}{5} e^{2x}

Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

y = y^{*} +\widetilde{y} =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

ответ: y =e^{x}\left(C_{1}\cos 2x + C_{2}\sin 2x + \dfrac{1}{5} e^{x}\right)

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота