За перший день турист проїхав 20% усього шляху, за другий — 60% остачі, а за третій — решту 48 км. Знайдіть довжину шляху, який подолав турист за три дні.
Чорний Пес (англ. Black Dog) — один з найнебезпечніших піратів з команди старого П’ю, на лівій руці у нього не вистачало двох пальців. За іронією долі він не зміг брати участь в експедиції «Еспаньйоли» за скарбами старого Флінта, так як в якості пірата і мисливця за скарбами був відомий юнзі «Еспаньйоли» Джиму Хокінсу. Пірат Чорний Пес не сміливець (боявся Біллі Бонса), лицемірний, хитрий: щоб вивідати, де знаходиться Біллі, розмовляв з Джимом ласкаво, лагідно, а коли той не послухався, почав лаятися. Після бійки з Біллі Бонсом рятується втечею.
Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещено начало вектора DO , точка D, с концом вектора BD, точка D. Поэтому результатом будет вектор ВО.
Правило треугольника сложения векторов. Если конец 1-го вектора совмещён с началом 2-го вектора, то суммой этих векторов будет вектор, начало которого совпадает с началом 1-го вектора, а конец - с концом 2-го вектора .
АВ+СО= 0 , так как при параллельном переносе вектора СО на линию, где лежит вектор АВ,совмещается начало вектора СО , точка С , с концом вектора АВ, точкой В, а конец вектора СО, точка О, совмещается с началом вектора АВ, точкой В. В таком положении вектор от точки А до точки О, совмещённой с точкой А, будет нулевой.
Теперь сложим 0+ВЕ=ВЕ.
ВЕ+DC=BO , так как при параллельном переносе вектора DC совмещаются точки D и Е , а также С и О . Фактически вычитается из вектора ВЕ его половина, остаётся вектор ВО.
ВО+ВС=BD . Действуем по правилу параллелограмма. Если совмещены начала обоих векторов, то их суммой будет вектор, являющийся диагональю параллелограмма, построенного на этих векторах, причём диагональ выходит из общего начала.
BD+DO=BO . По правилу треугольника у векторов-слагаемых совмещено начало вектора DO , точка D, с концом вектора BD, точка D. Поэтому результатом будет вектор ВО.
AB+CO+BE+DC+BC+DO=BO