Площадь увеличилась на 44%, а периметр увеличился на 20%.
Пошаговое объяснение:
1. Пусть сторона первоначального квадрата равна х см, тогда его площадь S1 = x^2 см^2, а периметр Р1 = 4х см.
2, После увеличения на 20% сторона квадрата станет равной х + 0,2х = 1,2х см. Площадь нового квадрата S2 = (1,2x)^2 = 1,44x^2 см^2, а периметр Р2 = 4•1,2х = 4,8х см.
3. S2/S1 = 1.44x^2/x^2 = 1,44 = 144% составляет площадь нового квадрата по отношению к площадь первоначального.
144% - 100% = 44% - на столько процентов увеличилась площадь.
4. Р2/Р1 = 4,8х/4х = 1,2 = 120% составляет периметр нового квадрата по отношению к периметру первоначального.
120% - 100% = 20% - на столько процентов увеличился периметр.
Для решения данной задачи, вспомним, что площадь квадрата равна квадрату его стороны. S=a^2. Пусть сторона квадрата равна — а. Тогда площадь квадрата. S = a^2. Увеличим сторону на 10%. Для того, чтобы найти процент от числа нужно это число умножить на процент и разделить на сто. a + 10/100*a = a+0.1a=1.1a. Вычислим площадь квадрата со стороной 1,1а. S = (1.1a)^2=1.21a^2. Чтобы найти, сколько процентов одно число составляет от другого надо найти частное этих чисел, а затем перевести его в проценты (для этого полученное число умножить на 100 %). 1,21а^2 - a^2 = 0.21a ^2. Вычислим на сколько процентов увеличилась площадь. 0.21a^2 / a^2 * 100 = 0.21 * 100 = 21%.
Площадь увеличилась на 44%, а периметр увеличился на 20%.
Пошаговое объяснение:
1. Пусть сторона первоначального квадрата равна х см, тогда его площадь S1 = x^2 см^2, а периметр Р1 = 4х см.
2, После увеличения на 20% сторона квадрата станет равной х + 0,2х = 1,2х см. Площадь нового квадрата S2 = (1,2x)^2 = 1,44x^2 см^2, а периметр Р2 = 4•1,2х = 4,8х см.
3. S2/S1 = 1.44x^2/x^2 = 1,44 = 144% составляет площадь нового квадрата по отношению к площадь первоначального.
144% - 100% = 44% - на столько процентов увеличилась площадь.
4. Р2/Р1 = 4,8х/4х = 1,2 = 120% составляет периметр нового квадрата по отношению к периметру первоначального.
120% - 100% = 20% - на столько процентов увеличился периметр.
Пошаговое объяснение:
Для решения данной задачи, вспомним, что площадь квадрата равна квадрату его стороны. S=a^2. Пусть сторона квадрата равна — а. Тогда площадь квадрата. S = a^2. Увеличим сторону на 10%. Для того, чтобы найти процент от числа нужно это число умножить на процент и разделить на сто. a + 10/100*a = a+0.1a=1.1a. Вычислим площадь квадрата со стороной 1,1а. S = (1.1a)^2=1.21a^2. Чтобы найти, сколько процентов одно число составляет от другого надо найти частное этих чисел, а затем перевести его в проценты (для этого полученное число умножить на 100 %). 1,21а^2 - a^2 = 0.21a ^2. Вычислим на сколько процентов увеличилась площадь. 0.21a^2 / a^2 * 100 = 0.21 * 100 = 21%.
ответ: на 21%