Задача. Кувшин стоит в три раза дороже чашки. Первый покупатель купил кувшин и 4 чашки, а второй покупатель купил два кувшина и две чашки, заплатив на 600 рублей больше. Сколько стоит кувшин? ответ и решение
Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Пошаговое объяснение:
1) У параллелограмма две стороны равны, значит, 8*2=16 (две стороны), 36-16=20 (две другие стороны)
20:2=10 (одна сторона)
2) Пусть ABCD-трап., OM-ср. Лин., CH-высота. Угол B=135гр. => угол A= 45гр. (180гр.-45гр.)=> угол A=углу D и равен углу DCH, т.к. Тр-ник DCH - прямоугольный => CH=HD=> треугольник DCH-р/б., т.е. HD=CH=10см. Проведем высоту BH1. AH1=HD =10см. Т.к. Ср. Линия= 16, то сумма BC+H1H= 16*2-10*2= 12см. 12см/2= 6см=> BC=6см, AD=6см+10*2= 26см
ответ: BC=6см, AD= 26см
3) это я незнаю.извини
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33