Задача В зелёному господарстві до свята виростили 16 000 гвоздик. В перший магазин відправили 3/5 усіх квітів, в другий 9/16 того, що залишилося, а решту завезли на ювілей фабрики . Скільки квітів завезли на юілей фабрики?
Решение: Обозначим скорость парохода за (х) км/час, а скорость течения реки за (у), тогда согласно условия задачи: -скорость движения парохода по течению реки равна (х+у)=18 -скорость движения парохода против течения реки равна: (х-у)=14 Решим систему уравнений: х+у=18 х-у=14 Из первого уравнения найдём значение (х) из первого уравнения и подставим во второе уравнение: х=18-у (18-у)-у=14 18-у-у=14 18-2у=14 -2у=14-18 -2у=-4 у=-4 : -2 у=2 (км/час) - скорость течения реки Подставим значение у=2 в уравнение х=18-у х=18-2 х=16 (км/час) - скорость парохода в стоячей воде
О Д Н А . и н т е р п р е т а ц и я . в о п р о с а
Если тот, кто будет предсказывать цвет доставаемого шара, будет проинформирован о составе корзины, то максимально точно предсказать он сможет в том случае, если будет ВСЁ время говорить – "красный!", вообще не пытаясь угадать "зелёный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают красный с долей а достают зелёный с долей Общая вероятность плохого предсказания составит тут
Если тот, кто будет предсказывать цвет доставаемого шара, будет проинформирован о составе второй корзины, то максимально точно предсказать он сможет в том случае, если будет ВСЁ время говорить – "зелёный!", вообще не пытаясь угадать "красный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают зелёный с долей а достают красный с долей Общая вероятность плохого предсказания составит тут
Д Р У Г А Я . и н т е р п р е т а ц и я . в о п р о с а
Если тот, кто будет предсказывать цвет доставаемого шара, не проинформирован о составе корзины, то лучшая стратегия угадать – будет говорить в половине случаев "красный!", и в половине случаев – "зелёный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают красный с долей а достают зелёный с долей или наоборот, предсказывают зелёный с долей а достают красный с долей Общая вероятность плохого предсказания составит тут
Аналогично можно показать, что и для второй корзины вероятность плохого угадывания будет составлять
Так что в такой интерпретации вопроса, задача не имеет чёткого ответа.
О т в е т : в случае, когда угадывающий знает, какого цвета шаров в корзине больше, и начинает при угадывании всё время говорить именно преобладающий цвет, он будет делать ошибок в первом случае, и ошибок во втором случае, поэтому угадывание цвета доставаемого шара менее предсказуемо во втором случае.
Обозначим скорость парохода за (х) км/час, а скорость течения реки за (у), тогда согласно условия задачи:
-скорость движения парохода по течению реки равна (х+у)=18
-скорость движения парохода против течения реки равна: (х-у)=14
Решим систему уравнений:
х+у=18
х-у=14
Из первого уравнения найдём значение (х) из первого уравнения и подставим во второе уравнение:
х=18-у
(18-у)-у=14
18-у-у=14
18-2у=14
-2у=14-18
-2у=-4
у=-4 : -2
у=2 (км/час) - скорость течения реки
Подставим значение у=2 в уравнение х=18-у
х=18-2
х=16 (км/час) - скорость парохода в стоячей воде
ответ: Скорость парохода в стоячей воде 16 км/час
вероятность достать красный шар ;
вероятность достать зелёный шар ;
Во втором случае:
вероятность достать красный шар ;
вероятность достать зелёный шар ;
О Д Н А . и н т е р п р е т а ц и я . в о п р о с а
Если тот, кто будет предсказывать цвет доставаемого шара, будет проинформирован о составе корзины, то максимально точно предсказать он сможет в том случае, если будет ВСЁ время говорить – "красный!", вообще не пытаясь угадать "зелёный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают красный с долей а достают зелёный с долей Общая вероятность плохого предсказания составит тут
Если тот, кто будет предсказывать цвет доставаемого шара, будет проинформирован о составе второй корзины, то максимально точно предсказать он сможет в том случае, если будет ВСЁ время говорить – "зелёный!", вообще не пытаясь угадать "красный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают зелёный с долей а достают красный с долей Общая вероятность плохого предсказания составит тут
Д Р У Г А Я . и н т е р п р е т а ц и я . в о п р о с а
Если тот, кто будет предсказывать цвет доставаемого шара, не проинформирован о составе корзины, то лучшая стратегия угадать – будет говорить в половине случаев "красный!", и в половине случаев – "зелёный!" (если при этом шар после доставания кладётся обратно). При этом предсказание будет плохим, когда, например, предсказывают красный с долей а достают зелёный с долей или наоборот, предсказывают зелёный с долей а достают красный с долей Общая вероятность плохого предсказания составит тут
Аналогично можно показать, что и для второй корзины вероятность плохого угадывания будет составлять
Так что в такой интерпретации вопроса, задача не имеет чёткого ответа.
О т в е т : в случае, когда угадывающий знает, какого цвета шаров в корзине больше, и начинает при угадывании всё время говорить именно преобладающий цвет, он будет делать ошибок в первом случае, и ошибок во втором случае, поэтому угадывание цвета доставаемого шара менее предсказуемо во втором случае.