1)7 дм,3 м, 370 м, 3 км. 2) 12+12=24 3) 240×3=720 4)9 дм 5) делятся на 2: 540,40,402, не делятся на 2: 125,215,305 6) 1)40-25=15 2)15×2=30 3)60+30=90 60+(40-25)×2=90 7)1) 40+20=60 (к)- на вторую 2)40+60=80 (к) всего 8)1 дм-ширина (или длинна, без разницы ) 2 дм-длинна (или ширина) 9) нечем не могу 10)1)140:4=35 (₽) за 1 кг яблок у Лены 2)99:3=33 (₽) за 1 кг яблок у Оли 3)35>33 ответ:яблоки у Лены дороже 11)1)2+1=3 (мин) жарятся 4 блина 2)2+1=3 (мин) жарятся ещё 3 блина ответ:за 6 мин (блины жарятся одновременно )
1) Дано уравнение: cos2x+sin2x=0,5. Воспользуемся формулой:
Для нашей задачи:
Приравняем выражение 0,5.
Разделим на √2 обе части и выразим относительно х:
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (-1)^k* arcsin(a) + πk, k ∈ Z (целые числа),
На заданном отрезке [7п/2, -2п] имеется 11 значений, соответствующих корням этого уравнения: -5,28577 0,997414 7,2806 -3,35361 2,92958 9,21276 -2,14418 4,13901 10,4222. -0,212016 6,07117
2) В заданном неравенстве 4x - 7*2x +10<0 что то неверно записано - или квадрат пропущен или сложить члены с х: 4x - 7*2x = -10х. Тогда неравенство: 4x - 7*2x +10<0 будет иметь вид -10х-10 < 0. 10х > 10. x > 1. Если пропущен квадрат 4x² - 7*2x +10<0, то получим квадратное неравенство 4x² - 14x +10<0. Находим крайние точки, при которых квадратный трёхчлен равен 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-14)^2-4*4*10=196-4*4*10=196-16*10=196-160=36;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-14))/(2*4)=(6-(-14))/(2*4)=(6+14)/(2*4)=20/(2*4)=20/8=2,5;x_2=(-√36-(-14))/(2*4)=(-6-(-14))/(2*4)=(-6+14)/(2*4)=8/(2*4)=8/8=1.Получаем ответ: 1 < x <2,5
2) 12+12=24
3) 240×3=720
4)9 дм
5) делятся на 2: 540,40,402,
не делятся на 2: 125,215,305
6) 1)40-25=15
2)15×2=30
3)60+30=90
60+(40-25)×2=90
7)1) 40+20=60 (к)- на вторую
2)40+60=80 (к) всего
8)1 дм-ширина (или длинна, без разницы )
2 дм-длинна (или ширина)
9) нечем не могу
10)1)140:4=35 (₽) за 1 кг яблок у Лены
2)99:3=33 (₽) за 1 кг яблок у Оли
3)35>33
ответ:яблоки у Лены дороже
11)1)2+1=3 (мин) жарятся 4 блина
2)2+1=3 (мин) жарятся ещё 3 блина
ответ:за 6 мин
(блины жарятся одновременно )
Воспользуемся формулой:
Для нашей задачи:
Приравняем выражение 0,5.
Разделим на √2 обе части и выразим относительно х:
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (-1)^k* arcsin(a) + πk, k ∈ Z (целые числа),
На заданном отрезке [7п/2, -2п] имеется 11 значений, соответствующих корням этого уравнения:-5,28577 0,997414 7,2806
-3,35361 2,92958 9,21276
-2,14418 4,13901 10,4222.
-0,212016 6,07117
2) В заданном неравенстве 4x - 7*2x +10<0 что то неверно записано - или квадрат пропущен или сложить члены с х: 4x - 7*2x = -10х.
Тогда неравенство: 4x - 7*2x +10<0 будет иметь вид -10х-10 < 0.
10х > 10.
x > 1.
Если пропущен квадрат 4x² - 7*2x +10<0, то получим квадратное неравенство 4x² - 14x +10<0.
Находим крайние точки, при которых квадратный трёхчлен равен 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-14)^2-4*4*10=196-4*4*10=196-16*10=196-160=36;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-14))/(2*4)=(6-(-14))/(2*4)=(6+14)/(2*4)=20/(2*4)=20/8=2,5;x_2=(-√36-(-14))/(2*4)=(-6-(-14))/(2*4)=(-6+14)/(2*4)=8/(2*4)=8/8=1.Получаем ответ: 1 < x <2,5