Найдём второе время, когда он ехал только на автобусе
t2 = S/va
Найдём отношение этих времён. Там всё сократится и останется
t2/t1 = 2к/(к+1). Но по условию, это отношение равно 3/2, поэтому
2к/(к+1)=3/2
4к = 3(к+1)
к=3.
Вот и всё. Машина проедет этот путь в 3 раза быстрее.
PS Я специально расписал так подробно и выбрал не совсем обычный метод решения, просто для того, чтобы несколько расширить кругозор и подходы к решению подобных задач. Все они решаются примерно так же.
Все жители острова не могут быть лжецами, иначе каждый из них сказал бы правду. Возьмем некоторого рыцаря. Из его заявления вытекает, что лжецов на острове больше, чем (2001-1)/2=1000. Возьмем теперь некоторого лжеца. Его заяление ложно, поэтому кроме него не более половины жителей острова - лжецы. Это означает, что кроме него на острове не более 2000/2=1000 лжецов, т.е. вместе с ним лжецов не более 1001. Таким образом, из полученных оценок на число лжецов получаем, что единственная возможность - когда на острове ровно 1001 лжец.
Это задача на движение, поэтому участвуют скорости, расстояния, время.
Единственная формула, которую нужно знать, это S=v*t
В задании нужно найти отношение времён tа/tм. Воспользовавшись нашей формулой, получим
tа/tм = S/vа : S/vм = vм/vа
Теперь начнём решать.
Пусть
S - расстояние АВ
к = vм/vа, откуда vм=k*vа (vм - скорость машины, vа - скорость автобуса)
Найдём первое время(половина пути на автобусе, другая половина на машине)
t1 = (S/2):va + (S/2):vм = (S/2)*(1/vа+1/vм)=(S/2)*(1/vа + 1/(к*vа))= (S/2vа)*(1 + 1/к)=(S/2va)*(k+1)/k
Найдём второе время, когда он ехал только на автобусе
t2 = S/va
Найдём отношение этих времён. Там всё сократится и останется
t2/t1 = 2к/(к+1). Но по условию, это отношение равно 3/2, поэтому
2к/(к+1)=3/2
4к = 3(к+1)
к=3.
Вот и всё. Машина проедет этот путь в 3 раза быстрее.
PS Я специально расписал так подробно и выбрал не совсем обычный метод решения, просто для того, чтобы несколько расширить кругозор и подходы к решению подобных задач. Все они решаются примерно так же.
Решение
Все жители острова не могут быть лжецами, иначе каждый из них сказал бы правду. Возьмем некоторого рыцаря. Из его заявления вытекает, что лжецов на острове больше, чем (2001-1)/2=1000. Возьмем теперь некоторого лжеца. Его заяление ложно, поэтому кроме него не более половины жителей острова - лжецы. Это означает, что кроме него на острове не более 2000/2=1000 лжецов, т.е. вместе с ним лжецов не более 1001. Таким образом, из полученных оценок на число лжецов получаем, что единственная возможность - когда на острове ровно 1001 лжец.
ответ
1001.00