В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Mariyaftolov
Mariyaftolov
07.06.2022 06:07 •  Математика

Задание. Выполните в тетради рисунки, последовательно соединяя точки. Подпишите рисунки.

КООРДИНАТНАЯ ПЛОСКОСТЬ
6 класс

Рисунок 1.
1) (2; - 3), (2; - 2), (4; - 2), (4; - 1), (3; 1), (2; 1), (1; 2), (0; 0), (- 3; 2), (- 4; 5), (0; 8), (2; 7), (6; 7), (8; 8), (10; 6), (10; 2), (7; 0), (6; 2), (6; - 2), (5; - 3), (2; - 3).
2) (4; - 3), (4; - 5), (3; - 9), (0; - 8), (1; - 5), (1; - 4), (0; - 4), (0; - 9), (- 3; - 9), (- 3; - 3), (- 7; - 3), (- 7; - 7), (- 8; - 7), (- 8; - 8), (- 11; - 8), (- 10; - 4), (- 11; - 1), (- 14; - 3),
(- 12; - 1), (- 11;2), (- 8;4), (- 4;5).
3) Глаза: (2; 4), (6; 4).
Рисунок 2.
1) (- 9; 5), (- 7; 5), (- 6; 6), (- 5; 6), (- 4; 7), (- 4; 6), (- 1; 3), (8; 3), (10; 1), (10; - 4),
(9; - 5), (9; - 1), (7; - 7), (5; - 7), (6; - 6), (6; - 4), (5; - 2), (5; - 1), (3; - 2), (0; - 1),
(- 3; - 2), (- 3; - 7), (- 5; - 7), (- 4; - 6), (- 4; - 1), (- 6; 3), (- 9; 4), (- 9; 5).
2) Глаз: (- 6; 5)
Рисунок 3.
1) (- 9; 6), (- 5; 9), (- 5; 10), (- 4; 10), (- 4; 4), (- 3; 4), (0; 7), (2; 4), (4; 7), (7; 4),
(9; 3), (9; 1), (8; - 1), (8; 1), (7; 1), (7; - 7), (6; - 7), (6; - 2), (4; - 1), (- 5; - 1), (- 5; - 7),
(- 6; - 7), (- 6; 5), (- 7;5), (- 8; 4), (- 9; 4), (- 9; 6).
2) Глаз: (- 6; 7).

Показать ответ
Ответ:
arladich
arladich
12.01.2020 21:42
Для определённости пронумеруем виды трёхслойного куба (далее куб) по порядку по строкам. Так, например, третий – это полностью симметричный.

Далее, для описания манипуляций с видами будем использовать термины:

RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)

Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.

В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.

Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.

Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.

Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.

1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)

2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.

3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.

4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.

5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.

При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.

Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.

Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:

В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.

Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.

Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.

Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.

Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).

Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.

Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.

А значит, окончательно, нам подходит вариант (Д)

О т в е т :

26. большой куб 3x3x3 сложен из 27 одинаковых маленьких кубиков, 15 из которых закрашены, а 12 -белы
26. большой куб 3x3x3 сложен из 27 одинаковых маленьких кубиков, 15 из которых закрашены, а 12 -белы
0,0(0 оценок)
Ответ:
Yarick2005
Yarick2005
20.02.2023 15:29
A+b = 8    =>   a = 8-b 
a/b = (8-b)/b   =>
ОДЗ:  b≠0; b≠8

1) a/b   =>  a < b
У правильной дроби числитель (8-b) меньше знаменателя b:
 8 - b < b
-2b < - 8
2b > 8
b > 4
Подставим вместо b значения b>4, не забудем b≠0; b≠8 и получим искомые дроби:
b=5 =>   a/b = (8-b)/b=(8-5)/5= 3/5
b=6 =>   a/b = (8-b)/b=(8-6)/6=2/6= 1/3
b=7 =>   a/b = (8-b)/b=(8-7)/7= 1/7
b=9 =>   a/b = (8-b)/b=(8-9)/9= - 1/9
b=10 =>  a/b = (8-b)/b=(8-10)/10= - 2/10 = -1/5
b=11 =>  a/b = (8-b)/b=(8-11)/11= - 3/11
ответ: ³/₅;  ¹/₃;  ¹/₇;  - ¹/₉; - ¹/₅;  - ³/₁₁ 

2) a/b   =>  a > b
У неправильной дроби числитель (8-b) больше знаменателя b:
 8 - b > b
-2b > - 8
2b < 8
b < 4
Подставим вместо b значения b<4, не забудем b≠0; b≠8 и получим искомые дроби:
b=3 =>   a/b = (8-b)/b=(8-3)/3= 5/3
b=2 =>   a/b = (8-b)/b=(8-2)/2=6/2 = 3/1
b=1 =>   a/b = (8-b)/b=(8-1)/1= 7/1
b= - 1 =>   a/b = (8-b)/b=(8-(-1))/(-1)= - 9/1
b= - 2 =>  a/b = (8-b)/b=(8-(-2))/(-2)= -10/2
b= - 3 =>  a/b = (8-b)/b=(8-(-3))/(-3)= - 11/3
ответ: ⁵/₃;  ³/₁;  ⁷/₁;  - ⁹/₁;  - ¹⁰/₂; - ¹¹/₃
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота