Задания 1. Найдите значение выражения:
( 2,5 - 21/(3 ))*(-5 1/7) + 11/3 : (- 5,6 ) =
[4]
2. Вычислите, используя законы умножения:
15,87 ⋅(−1,09)+ (− 5,87)⋅(−1,09). [3]
3. Запишите периодическую десятичную дробь в виде обыкновенной :
а) 0,(7); b) 2,4(3). [4]
4. Упростите выражение и найдите его значение:
- 1,4m*6 + 2.9n*2 при m = 0,5 ; n = -3
Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x:
x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24
x1=1/6*a
x2=1/2*a
Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a)..
А x=1/6*a является точкой максимума функции объема.
ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
О - вершина трех треугольников
здесь и дальше подразумеваем что высота опущена из точки О
высота треугольника АВО h1 = ОВ*sin(угол АВО)
высота треугольника ВСО h2 = ОВ*sin(угол СВО)
так как ВО - биссектриса угол АВО = угол СВО значит h2 = ОВ*sin(АВО) = h1
заметим, что h2 = CО *sin(угол ВСО)
высота треугольника СДО h3 = СО*sin(угол ДСО)
так как СО - биссектриса угол ВСО = угол ДСО значит h3 = СО*sin(угол ВСО) = h2
мы получили h1 = h2 = h3 - доказано !