В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
9276
9276
01.10.2021 02:53 •  Математика

Задания для самостоятельного решения Решить уравнение 1). 2x + 5 = 2(-x + 1) 11 2), бу – 34y - 1) = 4 + Бу

Показать ответ
Ответ:

Для удобства разобьем многочлен на 2 пары x^2-xy и -4x+4y.

Становится видно, что в первой паре общим множителем является х. Вынесем его за скобки получим x^2-xy=х(х-у).

Во второй паре общий множитель -4, Вынесем его за скобки -4x+4y=-4(х-у).

Снова объединим две пары с уже вынесенными общими множителями за скобки в одно выражение получим x^2-xy-4x+4y=х(х-у)-4(х-у)

Видно, что для обоих членов многочлена общий множитель (х-у). Вынесем его за скобки х(х-у)-4(х-у)=(х-у)(х-4)

ответ: x^2-xy-4x+4y=(х-у)(х-4)

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
лизанезнающая
лизанезнающая
26.02.2020 23:31

(б)

Пусть n - нечётное. Докажем, что тогда условие задачи невыполнимо. Всего пар соседних чисел в многоугольнике столько же, сколько и чисел. Так как многоугольник, удовлетворяющий условиям задачи, содержит все возможные пары хотя бы по одному разу, а различных пар ровно n*(n+1)/2, то каждая пара соседних различных чисел встречается в многоугольнике ровно один раз. Но если n нечётно, то число "0" участвует в нечётном количестве пар, но тогда либо не будет хотя бы одной пары, либо хотя бы одна пара появится дважды. Значит, n - чётное число.

Пусть n - чётное. Будем строить пример по индукции.

База (n = 2): >-0-1-2-> (и так сойдёт).

Переход (от n = 2k-2 к n = 2k):

Пусть мы умеем строить пример для n = 2k-2. Найдём место, где стоят рядом числа "0" и "1" и "увеличим" многоугольник в этом месте, добавив между ними 2n - 1 пустую вершину (теперь из (n-2)*(n-1)/2-угольника мы получили n*(n+1)/2-угольник). Рядом с числом "1" напишем число "0" (повторения не будет, так как теперь исходные "0" и "1" стоят отдельно). Осталось 2n - 2 пустые вершины. Теперь мы должны получить такую цепь ("2k" и "2k-1" чередуются (через 1 число), p и q - они же, но мы не знаем (не хотим перебирать два случая), в каком порядке они стоят около "k", так что считаем, что "слева" стоит p. Все числа кроме "2k" и "2k-1" - последовательные числа от "1" до "2k-2"):

(???)--0--(2k)--(1)--(2k-1)--(2)--(2k)--(3)--...(p)--(k)--(q)--(p)--(k+1)--(q)--...--(2k)--(2k-2)--(2k-1)--(0)--(1)--(???)

Заметим, что все числа (кроме 2k, 2k-1 и пары "0-1") остались на своих местах, следовательно, все пары сохранились. Пару 0-1, а также все пары для чисел "2k" и "2k-1" (каждое из них стоит рядом с каждым из остальных чисел, а также они стоят рядом друг с другом), мы сделали. Следовательно, пример верен и переход индукции завершён.

(а)

Для n = 1 пример очевиден.

Для n = 2k, заменим все числа "0" на "1" в примере для 2k из задачи "б". Все требуемые пары всё ещё останутся.

Для n = 2k + 1, построим пример для n = 2k, между "0" и "1" добавим n + 1 нуль (чтобы достичь нужного количества чисел в многоугольнике), а потом увеличим все числа на 1. Все требуемые пары сохранятся.

ответ: (а) при любых n; (б) при чётных n.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота