попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
Для начала найдем эти числа: a=2^2*3*5^3=1500 b=2*3^3*5^2=1350 c=2^3*3^2*5=360 Вначале напишу ответ, в ниже - решение. ответ: Наименьшее общее кратное НОК (1500; 1350; 360) = 27000
Решение:
Наименьшее общее кратное:
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
1500 = 2 · 2 · 3 · 5 · 5 · 5
1350 = 2 · 3 · 3 · 3 · 5 · 5
360 = 2 · 2 · 2 · 3 · 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.
a=2^2*3*5^3=1500
b=2*3^3*5^2=1350
c=2^3*3^2*5=360
Вначале напишу ответ, в ниже - решение.
ответ: Наименьшее общее кратное НОК (1500; 1350; 360) = 27000
Решение:
Наименьшее общее кратное:
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
1500 = 2 · 2 · 3 · 5 · 5 · 5
1350 = 2 · 3 · 3 · 3 · 5 · 5
360 = 2 · 2 · 2 · 3 · 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (1500; 1350; 360) = 2 · 2 · 3 · 5 · 5 · 5 · 3 · 3 · 2 = 27000
Наименьшее общее кратное НОК (1500; 1350; 360) = 27000