Правильная треугольная пирамида - это тетраэдр. AB = AC = BC = AS = BS = CS = 2 OF = 1/4*OS Центр основания пирамиды О - это центр равностороннего тр-ка АВС. CM - медиана, она же биссектриса и высота тр-ка АВС. AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3 MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3 OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3 OF = 1/4*OS = 2√6/12 = √6/6 И наконец находим угол между плоскостью MBF = ABF и ABC. tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2 OMF = arctg (√2/2)
Строим график определяем пределы интегрирования нижний -6 верхний 1 (видно на графике). Посчитаем аналитически точки пересечения они же пределы интегрирования:
6x+x^2=6+х
х^2+5х-6=0
D=5^2 -4*1*(-6)=25+24=49
x1=(-5+√49)/2*1=(-5+7)/2=2/2=1
x2=(-5-√49)/2*1=(-5-7)/2=-12/2=-6
Так как парабола расположена ниже прямой, подъинтегральное выражение из пямой вычитаем параболу:
AB = AC = BC = AS = BS = CS = 2
OF = 1/4*OS
Центр основания пирамиды О - это центр равностороннего тр-ка АВС.
CM - медиана, она же биссектриса и высота тр-ка АВС.
AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3
MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3
OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3
OF = 1/4*OS = 2√6/12 = √6/6
И наконец находим угол между плоскостью MBF = ABF и ABC.
tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2
OMF = arctg (√2/2)
ответ:57,17
Пошаговое объяснение:
Строим график определяем пределы интегрирования нижний -6 верхний 1 (видно на графике). Посчитаем аналитически точки пересечения они же пределы интегрирования:
6x+x^2=6+х
х^2+5х-6=0
D=5^2 -4*1*(-6)=25+24=49
x1=(-5+√49)/2*1=(-5+7)/2=2/2=1
x2=(-5-√49)/2*1=(-5-7)/2=-12/2=-6
Так как парабола расположена ниже прямой, подъинтегральное выражение из пямой вычитаем параболу:
6+х-(6x+x^2)=6+х-6х-x^2=6-5х-x^2
внизу -6∫ верхний 1(6-5х-x^2)dx= -x^3/3-5*x^2/2+6x)внизу -6|верхний 1=-1/3-(1/3*(-6)^3) -5*1/2-(-5/2*(-6)^2)+6*1-6*(-6)=-72,33-2,5+90+42=57,17