1.Пишем вместо неравенств равенства. 1) A+B+C > 120 2) A+B > 100 3) A+C > 80 4) B+C > 60 Пишем 5) = 1) - 4) 5) А > 120 - 60 >60 кг - первый - ОТВЕТ 6) В > 100 - А > 40 кг - второй - ОТВЕТ 7) С > 80 - А > 20 кг - третий - ОТВЕТ 2.Одновременно, не может увеличиться. Если ученик высокий, то в том классе, откуда он ушел средний рост уменьшится, а в том классе, куда он пришел-увеличится. А если он низкий-то -наоборот 4.Представим, что некие команды (часть общего списка) играли только между собой. Группа таких команд может насчитывать не менее семи - ведь если бы их было меньше, они не смогли бы сыграть шесть раз с разными. Итак, допустим одну такую группу мы нашли, остаётся ещё семь команд, которые как раз составят другую аналогичную группу. Итого мы имеем две группы по семь, которые играли только внутри группы и не играли вне её. Это значит, что можно найти пару команд, не игравших друг с другом (по одной команде из каждой группы), но невозможно будет найти такую тройку (ведь в этой тройке две команды обязательно будут членами одной группы, а значит уже играли между собой)
Пусть вначале(до первой партии) у А было Х р., у В У р., у С М р. Пусть 4в первой партии проиграл С, тогда у А 2Х р., у В 2У р., у С М р. Пусть во второй партии проиграл В, тогда у А 4Х р., у В 2У р., у С 2М р. Так как каждый проиграл по одному разу, то в третьей партии пройграл А; и после неё у С 4М р.; у В 4У р., у А 4Х р. Так как после трёх партий у всех было одинаковое количество денег(48 р.), то 4Х=4У=4М=48 р. Получили уравнения: 4Х=48; 4У=48; 4М=48; 4Х=48; 4У=48; 4М=48; Х=48/4; У=48/4; М=48/4; Х=12; У=12; М=12; Получили, что Х=12 р.; У=12 р.; М=12 р.; Значит, у всех в начале было по 12 рублей. ответ: у А было 12 р., у В было 12 р., у С было 12 р.
1) A+B+C > 120
2) A+B > 100
3) A+C > 80
4) B+C > 60
Пишем 5) = 1) - 4)
5) А > 120 - 60 >60 кг - первый - ОТВЕТ
6) В > 100 - А > 40 кг - второй - ОТВЕТ
7) С > 80 - А > 20 кг - третий - ОТВЕТ
2.Одновременно, не может увеличиться. Если ученик высокий, то в том классе, откуда он ушел средний рост уменьшится, а в том классе, куда он пришел-увеличится. А если он низкий-то -наоборот
4.Представим, что некие команды (часть общего списка) играли только между собой. Группа таких команд может насчитывать не менее семи - ведь если бы их было меньше, они не смогли бы сыграть шесть раз с разными. Итак, допустим одну такую группу мы нашли, остаётся ещё семь команд, которые как раз составят другую аналогичную группу. Итого мы имеем две группы по семь, которые играли только внутри группы и не играли вне её. Это значит, что можно найти пару команд, не игравших друг с другом (по одной команде из каждой группы), но невозможно будет найти такую тройку (ведь в этой тройке две команды обязательно будут членами одной группы, а значит уже играли между собой)
4Х=48; 4У=48; 4М=48;
Х=48/4; У=48/4; М=48/4;
Х=12; У=12; М=12;
Получили, что Х=12 р.; У=12 р.; М=12 р.; Значит, у всех в начале было по 12 рублей.
ответ: у А было 12 р., у В было 12 р., у С было 12 р.