Законы распределения двух случайных величин заданы следующим образом:() а) Найти распределение случайной величины X·Y ; б) показать , что X + X не равно 2·X , но M(X+X)=M(2·X).
Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!
Такого числа нет!
Пошаговое объяснение:
Предположим, что найдется такое простое число. Тогда все числа после него - составные, и количество всех простых чисел ограничено, мы можем их все записать.
Пусть у нас есть это конечное множество простых чисел. Тогда посмотрим на число A, которое на 1 больше их наибольшего общего кратного.
Тогда если А простое, то мы нашли простое число, которое не входит в наше множество простых чисел. Мы доказали, что такое множество бесконечно
Если А все же не простое, то есть хотя бы одно число, на которое делится А. Тогда это число никак не может быть в нашем множестве, так как все числа данного множества являются делителями их наибольшего общего кратного, а А на 1 больше. Тогда мы снова нашли новое простое число. Значит множество простых чисел бесконечно!
А поскольку любое простое число является натуральным, то для любого "самого большого" простого натурального числа найдется число большее. Значит такого числа не существует!