Записать множество А натуральных делителей числа 12. №2 В данном множестве ={лев,лисица,гиена,слон,рысь} все элементы, кроме одного, обладают некоторым свойством. Запишите это характеристическое свойство и найдите элемент, не обладающий им. №3 Даны множества ={1,2,3,4,5,6} и ={3,4,5,6,7,8}. Найдите объединение, пересечение и разность этих множеств. №4 a) Пусть - множество натуральных делителей числа 24, - множество натуральных делителей числа 18. Запишите множество ∩. b) Пусть - множество натуральных делителей числа 30, - множество натуральных делителей числа 24. Запишите множество ∪.
По значению тангенса можно найти значение косинуса. Их связывает одно очень важное соотношение:
1 + tg²t = 1 / cos²t
Отсюда выразим квадрат косинуса:
cos²t = 1 / (1 + tg²t)
Теперь подставим значения в данное выражение и найдём квадрат косинуса:
cos²t = 1 / (1 + 49/576) = 1 : 625/576 = 576/625
Следовательно, по квадратному уравнению получаем два возможных значения косинуса:
сos t = 24/25 или cos t = -24/25
Какой косинус выбрать - положительный или отрицательный? По условию значение угла лежит в промежутке от π до 3π/2. Поэтому, угол лежит в 3 четверти, где косинус как мы знаем отрицательный. Поэтому, cos t = -24/25.
Теперь элементарно вычислить например котангенс угла. Получаем по соотношению между тангенсом и котангенсом:
ctg α = 1 / tg α = 1 : 7/24 = 24/7
Синус угла легко найти, зная косинус и например тангенс(всё это мы знаем).
tg α = sin α / cos α
Отсюда
sin α = tg α * cos α = 7/24 * (-24/25) = -7/25
Задача решена.
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2)2 · 0,4 + (2-2)2 · 0,3 +(3-2)2 · 0,2 + (4-2)2 · 0,1 = 1
Пошаговое объяснение: