На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя
1) Каждое следующее число на 900 больше предыдущего:
9800; 10700; 11600; 12500; 13400; 14300; 15200; 16100.
2) Каждое следующее число в 2 раза больше предыдущего:
5200; 10400; 20800; 41600; 83200.
3) Уменьшаем первую и последнюю цифру на 1 и убираем один 0:
500005; 40004; 3003; 202; 11.
4) Каждое следующее число уменьшаем на 1000:
301000; 300000; 299000; 298000; 297000.
5) Переносим первую цифру каждого предыдущего числа в конец следующего:
123456; 234561; 345612; 456123; 561234; 612345.
6) Каждое следующее число равно сумме двух предыдущих:
400; 500; 900; 1400; 2300; 3700; 6000
На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя