Найдя второй угол при основании bc, обнаружим, что треугольник аbc - равнобедренный. А треугольник асh- половина равностороннего треугольника и аh в нем можно найти по формуле высоты равностороннего треугольника ( по теореме Пифагора получим тот же результат).
Найдем bc=2 аh=ас√3
Искомые отношения сторон равны, поэтому
ас:bc=аb:bc=√3 :2 или ½√3
(в решении, данном во вложенном рисунке, опечатка, читаем ас:bc=аb:bc=√3)
---------------------------
Принцип решения второго задания совершенно такой же. Решение во втором рисунке.
На середине отрезке ав возьмём точку о и проведём окружность радиусом ао=ов. тогда наша окружность пройдёт через точки м и n, т.к. по условию углы ∠amb = ∠anb = 90°.лучи bm и bn делят угол abc на три равные части меньше 45°. отсюда, равны углы ∠abn = ∠mbc, т.к. содержат в себе по две равные доли угла авс.углы ∠ban и ∠bmn опираются на одну и ту же дугу ∪bn, следовательно, эти углы равны: ∠ban = ∠bmn. значит, треугольники δban и δbmk подобны по двум углам, и угол ∠bkm = 90°, как ∠anb.найдём мк по теореме пифагора:  рассмотрим треугольник δmbk. биссектриса треугольника bn делит сторону на отрезки, пропорциональные прилежащим сторонам:с другой стороны, ранее мы нашли, что составляем систему уравнений и решаем:по теореме пифагора находим bn:
Делаем рисунок к задаче.
Найдя второй угол при основании bc, обнаружим, что треугольник аbc - равнобедренный. А треугольник асh- половина равностороннего треугольника и аh в нем можно найти по формуле высоты равностороннего треугольника ( по теореме Пифагора получим тот же результат).
Найдем bc=2 аh=ас√3
Искомые отношения сторон равны, поэтому
ас:bc=аb:bc=√3 :2 или ½√3
(в решении, данном во вложенном рисунке, опечатка, читаем ас:bc=аb:bc=√3)
---------------------------
Принцип решения второго задания совершенно такой же. Решение во втором рисунке.