ответ:1) Пусть первый рабочий изготовил х (икс) деталей, тогда второй рабочий изготовил: (х · 5/6) деталей, третий рабочий: (х · 5/6 · 90/100) = (х · 3/4) деталей, а четвертый рабочий: (х · 3/4 – 8) деталей.
2) Зная общее количество изготовленных деталей, составим уравнение:
х + х · 5/6 + х · 3/4 + х · 3/4 – 8 = 152;
х + х · 5/6 + х · 3/4 + х · 3/4 = 152 + 8;
х · 12/12 + х · 10/12 + х · 9/12 + х · 9/12 = 160;
х · 40/12 = 160;
х · 10/3 = 160;
х = 160 : 10/3 = 160 · 3 : 10 = 48 (д.) – первый рабочий.
Внимание! Данные методы решения не учитывают ширину шва между плитками. Поэтому при выполнении строительных работ вам необходимо вносить соответствующую поправку, особенно при больших площадях покрытия.
Вариант решения №1 (для начальных классов).
Посчитаем длину дорожки из плитки, как если бы её выложили в одну ровную полоску. Для этого вначале отсечем из фигуры вертикальные полоски, так, как это показано на рис. 1.
Получаем длину вертикальных полосок:
12+8+4=24 (м)
Теперь подсчитаем длину оставшихся горизонтальных полосок. Т.к. ширина плитки равна 50 см, то очевидно, что от верхней и нижней полоски вертикальные полосы "отобрали" по 50+50=100 (см), т.е. 1 м
(см. рис. 2).
Тогда
длина горизонтальных полосок:
14-1+4+(14-4)-1 = 13+4+9 = 26 (м).
Суммарная длина полосы плитки равна
24+26=50 (м) = 5000 см
Тогда количество плитки для заполнения такой полосы равно:
5000:50=100 (шт.)
Вариант решения №2 (через площадь - универсальный метод).
Вычислим площадь полосы плитки Sд.. Для этого из площади наружного контура Sн. вычтем площадь внутреннего контура Sв.. Площади будем вычислять как сумму площадей двух прямоугольников, как это показано на рис 3.
Sн.=Sн₁.+Sн₂=12*10+8*4=152 (м²).
Аналогично вычислим площадь внутренней фигуры Sв. (см. рис. 4):
Sв.=Sв₁.+Sв₂=11*9+7*4=127 (м²).
Тогда площадь дорожки из плитки Sд. равна:
Sд.=Sн.-Sв.=152-127=25 (м²)
Тогда количество плиток можно найти, разделив площадь дорожки Sд. на площадь одной плитки Sп..
Sп. = 0,5*0,5=0,25 (м²)
Количество плитки равно:
Sд./Sп. =25/0,25=100 (шт.)
Вариант решения №3 (через периметр оси симметрии плитки).
Т.к. в нашем случае плитка - уникальная, самая симметричная из четырёхугольников фигура (квадрат) и по условию задания дан (косвенно) наружный периметр фигуры, выложенной плиткой, размером 50х50 см, то очевидно, что периметр, проведённый через оси вертикальных и горизонтальных полос будет отстоять от наружного контура на 0,25 м и равен (см. рис. 5):
ответ:1) Пусть первый рабочий изготовил х (икс) деталей, тогда второй рабочий изготовил: (х · 5/6) деталей, третий рабочий: (х · 5/6 · 90/100) = (х · 3/4) деталей, а четвертый рабочий: (х · 3/4 – 8) деталей.
2) Зная общее количество изготовленных деталей, составим уравнение:
х + х · 5/6 + х · 3/4 + х · 3/4 – 8 = 152;
х + х · 5/6 + х · 3/4 + х · 3/4 = 152 + 8;
х · 12/12 + х · 10/12 + х · 9/12 + х · 9/12 = 160;
х · 40/12 = 160;
х · 10/3 = 160;
х = 160 : 10/3 = 160 · 3 : 10 = 48 (д.) – первый рабочий.
3) Найдем детали второго рабочего: х · 5/6 = 48 · 5/6 = 48 : 6 · 5 = 40 (д.).
4) Узнаем количество деталей третьего рабочего: х · 3/4 = 48 : 4 · 3 = 36 (д.).
5) Определим детали четвертого рабочего: х · 3/4 – 8 = 36 – 8 = 28 (д.).
ответ: первый рабочий изготовил 48 деталей, второй – 40 деталей, третий – 36 деталей, а четвертый – 28 деталей.
Пошаговое объяснение:
100 штук
Пошаговое объяснение:
Внимание! Данные методы решения не учитывают ширину шва между плитками. Поэтому при выполнении строительных работ вам необходимо вносить соответствующую поправку, особенно при больших площадях покрытия.
Вариант решения №1 (для начальных классов).
Посчитаем длину дорожки из плитки, как если бы её выложили в одну ровную полоску. Для этого вначале отсечем из фигуры вертикальные полоски, так, как это показано на рис. 1.
Получаем длину вертикальных полосок:
12+8+4=24 (м)
Теперь подсчитаем длину оставшихся горизонтальных полосок. Т.к. ширина плитки равна 50 см, то очевидно, что от верхней и нижней полоски вертикальные полосы "отобрали" по 50+50=100 (см), т.е. 1 м
(см. рис. 2).
Тогда
длина горизонтальных полосок:
14-1+4+(14-4)-1 = 13+4+9 = 26 (м).
Суммарная длина полосы плитки равна
24+26=50 (м) = 5000 см
Тогда количество плитки для заполнения такой полосы равно:
5000:50=100 (шт.)
Вариант решения №2 (через площадь - универсальный метод).
Вычислим площадь полосы плитки Sд.. Для этого из площади наружного контура Sн. вычтем площадь внутреннего контура Sв.. Площади будем вычислять как сумму площадей двух прямоугольников, как это показано на рис 3.
Sн.=Sн₁.+Sн₂=12*10+8*4=152 (м²).
Аналогично вычислим площадь внутренней фигуры Sв. (см. рис. 4):
Sв.=Sв₁.+Sв₂=11*9+7*4=127 (м²).
Тогда площадь дорожки из плитки Sд. равна:
Sд.=Sн.-Sв.=152-127=25 (м²)
Тогда количество плиток можно найти, разделив площадь дорожки Sд. на площадь одной плитки Sп..
Sп. = 0,5*0,5=0,25 (м²)
Количество плитки равно:
Sд./Sп. =25/0,25=100 (шт.)
Вариант решения №3 (через периметр оси симметрии плитки).
Т.к. в нашем случае плитка - уникальная, самая симметричная из четырёхугольников фигура (квадрат) и по условию задания дан (косвенно) наружный периметр фигуры, выложенной плиткой, размером 50х50 см, то очевидно, что периметр, проведённый через оси вертикальных и горизонтальных полос будет отстоять от наружного контура на 0,25 м и равен (см. рис. 5):
(12-2*0,25)+(14-2*0,25)+(8-2*0,25)+(4-0,25+0,25)+(4+0,25-0,25)+(10-2*0,25) = 11,5+13,5+7,5+4+4+9,5=50 (м)
Разделим длину осевого периметра плитки на линейный размер одной плитки:
50/0,5=100 (шт.)