запишите неравенство множество решений которого изображается точками координатной плоскости лежащими выше параболы проходящей через точки А(-2;-6) В(-1;-5) и С(1;3)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.
ответ: ≈ 38 м
Пошаговое объяснение:
Найдём сколько метров пройдёт колесо за 1 оборот:
Возьмём формулу длины окружности С=2πr, где
С - длина окружности
r - радиус окружности
π ≈ 3,14
С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
Найдём, сколько метров пройдёт колесо за 12 оборотов:
3,14 * 12 ≈ 37,68 м - пройдёт колесо за 12 оборотов
Округлим расстояние до целых:
37,68 м ≈ 38 м
1) С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
2) 3,14 * 12 = 37,68 м - пройдёт колесо за 12 оборотов
3) 37,68 м ≈ 38 м
Пошаговое объяснение:
Точка на комплексной плоскости изображает число
- действительная часть числа (Real)
- мнимая часть числа (Imaginary)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.