запишите обыкновенную дробь 2/11 в виде периодической десятичной дроби и укажите период данной дроби а)0,18(18) в)0,1(8),период 8 с)0,18(8),период 8 д)0,(18),период
Для того чтобы найти экстремум функции найдем сперва ее производную
Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1
Пусть скорость течения х, скорость катера k*х, и они плыли t часов. Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение: 1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1), Тогда имеем: ((к+1)/(к-1))^2=1,5. Решаем полученное квадратное уравнение: k^2+2*k+1=1,5*k^2-3*k+1,5 0,5*k^2-5*k+0,5=0 k^2-10*k+1=0 k=5 ± √(24). Очевидно. что k > 1, значит k=5 + √(24).
Теперь приравняем производную к нолю и решим полученное уравнение
6x(x-1)=0
6х=0 х-1=0
х=0 х=1
Нанесем полученные точки на ось Ох и определим знак функции.
ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка
1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0
2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0
3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0
И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции
ответ:х=0 и х=1
Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени
x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение:
1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1),
Тогда имеем: ((к+1)/(к-1))^2=1,5.
Решаем полученное квадратное уравнение:
k^2+2*k+1=1,5*k^2-3*k+1,5
0,5*k^2-5*k+0,5=0
k^2-10*k+1=0
k=5 ± √(24).
Очевидно. что k > 1, значит k=5 + √(24).