ответ действительно : 18.00 Нарисуй круглые часы с отметкой 12.00, 3.00,6.00,9.00 (4 четверти по 3 часа) и поймешь: В сутках 24 часа . Стрелки проходят 2 круга по 12 часов (т.е. 2 раза по 4 четверти) Вот и получается , что половина времени после полуночи: 1/2 от 12 часов = 1/2*12= 12/2 =6 часов (либо утра, либо вечера) Если 6 утра - то до полудня остается всего 6 часов (6.00 до 12.00 , а это две четверти ) Если 6 вечера - то до полудня осталось 18 часов ( с 18.00 до 12.00, это как раз 6 четвертей из 8 возможных или 6/8 =3/4). Как-то так...
Тело, ограниченное поверхностями x + 2y + z - 2 = 0, x = 0, y = 0, z = 0, это треугольная пирамида, образованная пересечением заданной плоскости трёхгранного угла.
Уравнение плоскости переведём в уравнение "в отрезках".
Нарисуй круглые часы с отметкой 12.00, 3.00,6.00,9.00 (4 четверти по 3 часа) и поймешь:
В сутках 24 часа .
Стрелки проходят 2 круга по 12 часов (т.е. 2 раза по 4 четверти)
Вот и получается , что половина времени после полуночи:
1/2 от 12 часов = 1/2*12= 12/2 =6 часов (либо утра, либо вечера)
Если 6 утра - то до полудня остается всего 6 часов (6.00 до 12.00 , а это две четверти )
Если 6 вечера - то до полудня осталось 18 часов ( с 18.00 до 12.00, это как раз 6 четвертей из 8 возможных или 6/8 =3/4).
Как-то так...
Тело, ограниченное поверхностями x + 2y + z - 2 = 0, x = 0, y = 0, z = 0, это треугольная пирамида, образованная пересечением заданной плоскости трёхгранного угла.
Уравнение плоскости переведём в уравнение "в отрезках".
x + 2y + z = 2. Делим обе части на 2.
(x/2) + (y/1) + (z/2) = 1.
Эти отрезки - координаты вершин на осях.
Находим векторы по координатам точек:
AB = {Bx - Ax; By - Ay; Bz - Az} = {0 - 2; 1 - 0; 0 - 0} = {-2; 1; 0}
AC = {Cx - Ax; Cy - Ay; Cz - Az} = {0 - 2; 0 - 0; 2 - 0} = {-2; 0; 2}
AD = {Dx - Ax; Dy - Ay; Dz - Az} = {0 - 2; 0 - 0; 0 - 0} = {-2; 0; 0}
V = 1/6 |AB · [AC × AD]|
Найдем смешанное произведение векторов:
AB · (AC × AD) =
ABx ABy ABz
ACx ACy ACz
ADx ADy ADz
=
-2 1 0
-2 0 2
-2 0 0
= (-2)·0·0 + 1·2·(-2) + 0·(-2)·0 - 0·0·(-2) - 1·(-2)·0 - (-2)·2·0 = 0 - 4 + 0 - 0 - 0 - 0 = = -4
Найдем объем пирамиды:
V = 1/6 · 4 = 2/ 3