заполнена натуральными числами таким образом, что числа в каждом столбце отличаются на 10 (если из белого из двух чисел вычесть меньше), а отношение большего числа к меньшему в каждой строке равно 3. Какие числа могут быть в первом столбце этой таблицы? В ответе запишите сумму всех возможных ответов,
а) Прямая А не может лежать в одной из плоскостей, пересечением которых является прямая L. Если L и A скрещиваются, А лежит вне обоих плоскостей, иначе L и А пересекались бы, а не скрещивались. Прямая же B может лежать в любой из данных плоскостей, как и вне любой из них.
б) Прямые А и В могут лежать в разных плоскостях
в) Прямая А может пересекать одну или обе плоскости одновременно.Пересечением будет точка или две точки на двух плоскостях. Прямая же В не может пересекать в точке ни одну из этих плоскостей, может только принадлежать одной из них.
2
а) Плоскость Альфа и АС параллельны только если отрезок МN параллелен отрезку АС. Значит нужно доказать, что МN и АС параллельны. Но если бы они были параллельны, отрезок МN делил бы треугольник АВС на два подобных треугольника. Но в подобных треугольниках все соответствующие элементы пропорциональны. Мы же имеем равные значения для МВ и ВN - 5, и различные значения для АМ и NC- 13 и 8. То есть, если меньший подобный треугольник имеет две стороны по 5 единиц, бОльший подобный треугольник ДОЛЖЕН иметь соответствующие стороны ПРОПОРЦИОНАЛЬНО бОльшими - то есть увеличенными на равное количество единиц. У нас же сторона АВ, соответствующая стороне MB увеличивается на большее количество частей, чем ВС, соответствующая BN - то есть увеличивается НЕПРОПОРЦИОНАЛЬНО, что означает, что плоскость делит ABC не на подобные треугольники. А это безусловно доказывает, что непересечённая плоскостью АС сторона не является параллельной отрезку пересечения треугольника плоскостью MN.
б) MN возможно было бы найти, если бы MN и АС были параллельны - на основании подобия треугольников, описанном выше. Но так как мы доказали непараллельность АС и MN , для нахождения MN недостаточно данных.
3.
Угол между прямыми АС и BD может быть ЛЮБЫМ, независимо от расстояния между серединами отрезков и их длин. На основании того, что точке НЕ ЛЕЖАТ НА ОДНОЙ ПЛОСКОСТИ.