Заполните пропуски так, чтобы получилось верное решение. Условие. В однокруговом футбольном турнире участвовало 15 команд. После завершения турнира оказалось, что некоторые 6 команд набрали хотя бы N очков каждая. Какое наибольшее целое значение может принимать N?
Решение. Назовём эти 6 команд успешными, а остальные 9 команд назовём неуспешными. Назовём игру двух успешных команд внутренней, а игру успешной и неуспешной команды — внешней.
За каждую игру участвующие в ней команды суммарно получают не более 3 очков. Так как внутренних игр было ровно
, то только за такие игры все успешные команды суммарно заработали не более
3 ⋅
=
очков. Внешних игр было ровно
, и в каждой такой игре успешная команда зарабатывала не более 3 очков. Итого за внешние игры все успешные команды суммарно набрали не более
3 ⋅
=
очков. По условию успешные команды суммарно набрали хотя бы 6N очков, поэтому получаем неравенство 6N⩽
. Учитывая, что N является целым числом, из этого неравенства следует, что N⩽
.
Докажем, что эта оценка точная. Для этого приведём пример для N=
. Пронумеруем команды числами от 1 до 15. Покажем, как команды от 1 до 6 могут набрать нужное число очков.
Пусть каждая команда от 1 до 6 выиграла у каждой команды от 7 до 15, тогда только за такие игры каждая команда от 1 до 6 набрала
очков.
Пусть команды от 1 до 6 играли между собой так, как указано в таблице.
1 2 3 4 5 6
1 3 3 1 0 0
2 0 3 3 1 0
3 0 0 3 3 1
4 1 0 0 3 3
5 3 1 0 0 3
6 3 3 1 0 0
Пусть в каждой игре команд от 7 до 15 выиграла команда с большим номером (исход этих игр не имеет значения).
Итого в таком турнире каждая из команд от 1 до 6 набрала ровно
очка.
ответ: 8 см
1. Длина прямоугольника 8 см, ширина - 6 см. Найти площадь прямоугольника.
S = ab = 8*6 = 48 (см²)
2. Площадь прямоугольника 48 см². Найти ширину, если его длина 8 см.
S= ab => b = S/a = 48/8 = 6 (см)
Ну и на сладкое...)))
3. Длина прямоугольника на 2 см больше его ширины. Найти стороны прямоугольника, если его площадь составляет 48 см².
m = n+2 => S = mn = (n+2)n = n²+2n
n²+2n = 48
n²+2n-48=0 D=b²-4ac= 4+192 =196 = 14²
n₁=(-b+√D)/2a = 6
n₂=(-b-√D)/2a = -8 (не удовлетворяет условию)
n = 6 см, m = 6+2 = 8 см
ответ: 8см; 6 см
Решение во вложении.
Для решения неравенства грфически вам нужно преобразовать его в функцию f(x)=(...), построить графики данных уравнений, а затем определить, в какой из плоскостей, ограничиваемых графиком, находится нужное множество решений. Для прямой - слева или справа, для параболы - внутри неё или снаружи. Для этого берём любую точку из перечисленных областей и подставляем в неравенство. Если оно верное, зашриховываем выбранную зону. Если нет - противоположную ей область. Для прямой это оказалась область справа от неё, а для параболы - внутри. Затем ищем пересечение штриховок. Это ответ.
Обратите внимание: графическим решением неравенства при строгом знаке (> или <) является ТОЛЬКО определённая вами область, высекаемая графиком. Если знаки нестрогие (<= или >=), то точки самого графика тоже принадлежат множеству решений системы.
Обращаю внимание: я нарисовала новый чертёж с ответом отдельно. Это делать необязательно, достаточно просто хорошо прорисовать область решений на первом чертеже.