А)99/100<x<1⇒360/400<x<400/400⇒x=370/400,380/400,390/400 или х=37/40,19/20,39/40 б)2/5<x<3/5⇒8/20<x<12/20⇒x=9/20,10/20,11/20 или х=9/20,1/2,11/20 в)1/3<x<1/2⇒8/24<x<12/24⇒x=9/24,10/24,11/24 или х=3/8,5/12,11/24
a)9/10<x<1⇒36/40<x<40/40⇒x=37/40,38/40,39/40 или х=37/40,19/20,39/40 б)3/7<x<4/7⇒12/24<x<16/28⇒x=13/24,14/28,15/28 или х=13/24,7/14,15/28 в)1/4<x<1/3⇒15/60<x<20/60⇒x=16/60,17/60,18/60 или х=4/15,17/60,3/10
Рассмотрим треуг-ки ANC и AMC: У них общее основание - АС, и равные углы при основании, т. к. углы при основании в равнобедренном треугольнике равны. Имеем: угол NAC = углу MCA по условию задачи, но углы BAC=BCA, то есть равны и другие части этих углов - угол МАN=NCM. Таким образом треуг. AMC=треуг. ANC по стороне и двум углам. В равных треугольниках против равных углов лежат равные стороны. След-но, AM=NC. Так как треуг. ABC - равнобедренный, то MB=NC, (AB-AM =MB) = (BC-NC=BN), где AB=BC AM=NC. То есть треуг. MBN - равнобедренный.
б)2/5<x<3/5⇒8/20<x<12/20⇒x=9/20,10/20,11/20 или х=9/20,1/2,11/20
в)1/3<x<1/2⇒8/24<x<12/24⇒x=9/24,10/24,11/24 или х=3/8,5/12,11/24
a)9/10<x<1⇒36/40<x<40/40⇒x=37/40,38/40,39/40 или х=37/40,19/20,39/40
б)3/7<x<4/7⇒12/24<x<16/28⇒x=13/24,14/28,15/28 или х=13/24,7/14,15/28
в)1/4<x<1/3⇒15/60<x<20/60⇒x=16/60,17/60,18/60 или х=4/15,17/60,3/10
У них общее основание - АС, и равные углы при основании, т. к. углы при основании в равнобедренном треугольнике равны. Имеем: угол NAC = углу MCA по условию задачи, но углы BAC=BCA, то есть равны и другие части этих углов - угол МАN=NCM. Таким образом треуг. AMC=треуг. ANC по стороне и двум углам.
В равных треугольниках против равных углов лежат равные стороны. След-но, AM=NC. Так как треуг. ABC - равнобедренный, то MB=NC, (AB-AM =MB) = (BC-NC=BN), где AB=BC AM=NC.
То есть треуг. MBN - равнобедренный.