Вспомним признак делимости на 9: число делится на 9 тогда и только тогда, когда его сумма цифр делится на 9.
Этот признак работает и для равноостаточности при делении на 9. То есть, число и его сумма цифр имеют одинаковый остаток при делении на 9.
Пусть - изначальное число и - сумма цифр числа . Пусть остаток при делении на 9 у числа - r, тогда и у числа остаток при делении на 9 тоже r. Но тогда и у чисел остаток при делении на 9 равен r. Но так как r - чисто от 0 до 9, то это и есть наша оставшаяся в конце цифра.
Тогда нам нужно всего лишь найти остаток при делении на 9 у числа . А он такой же, как у числа , и такой же, как у числа , и такой же, как у числа , а он такой же, как у числа , а это равно 7.
7
Пошаговое объяснение:
Вспомним признак делимости на 9: число делится на 9 тогда и только тогда, когда его сумма цифр делится на 9.
Этот признак работает и для равноостаточности при делении на 9. То есть, число и его сумма цифр имеют одинаковый остаток при делении на 9.
Пусть - изначальное число и - сумма цифр числа . Пусть остаток при делении на 9 у числа - r, тогда и у числа остаток при делении на 9 тоже r. Но тогда и у чисел остаток при делении на 9 равен r. Но так как r - чисто от 0 до 9, то это и есть наша оставшаяся в конце цифра.
Тогда нам нужно всего лишь найти остаток при делении на 9 у числа . А он такой же, как у числа , и такой же, как у числа , и такой же, как у числа , а он такой же, как у числа , а это равно 7.
Вероятность того, что из первого ящика вынута стандартная деталь (событие А),,
Р (А) = 8/10 = 0,8.
Вероятность того, что из второго ящика вынута стандартная деталь (событие В),
Р (В) =7/10 = 0,7.
Вероятность того, что из третьего ящика вынута стандартная деталь (событие С),
Р (С) =9/10 = 0,9.
Так как события А, В и С независимые в совокупности, то искомая вероятность (по теореме умножения) равна
Р (ABC) = Р(А)Р(В)Р(С) = 0,8 • 0,7 • 0,9 = 0,504.
Приведем пример совместного применения теорем сложения и умножения.
Пошаговое объяснение: